FAIRCHILD

BEMICONDUCTOR

MM74HC4316 Quad Analog Switch with Level Translator

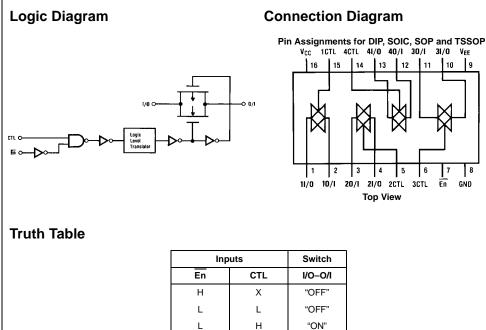
General Description

The MM74HC4316 devices are digitally controlled analog switches implemented in advanced silicon-gate CMOS technology. These switches have low "ON" resistance and low "OFF" leakages. They are bidirectional switches, thus any analog input may be used as an output and vice-versa. Three supply pins are provided on the MM74HC4316 to implement a level translator which enables this circuit to operate with 0–6V logic levels and up to $\pm 6V$ analog switch levels. The MM74HC4316 also has a common enable input in addition to each switch's control which when LOW will disable all switches to their OFF state. All analog inputs

and outputs and digital inputs are protected from electrostatic damage by diodes to V_{CC} and ground.

February 1984

Revised February 1999


Features

- Typical switch enable time: 20 ns
- Wide analog input voltage range: ±6V
- Low "ON" resistance: 50 typ. (V_{CC}-V_{EE} = 4.5V) 30 typ. (V_{CC}-V_{EE} = 9V)
- Low quiescent current: 80 µA maximum (74HC)
- Matched switch characteristics
- Individual switch controls plus a common enable

Ordering Code:

Order Number	Package Number	Package Description	1
MM74HC4316M	M16A	16-Lead Small Outline Integrated Package (SOIC), JEDEC MS-012, 0.150" Narrow	1
MM74HC4316SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide	1
MM74HC4316MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-1536, 4.4mm Wide	1
MM74HC4316N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide	
			1

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 1999 Fairchild Semiconductor Corporation DS005369.prf

MM74HC4316

Absolute Maximum Ratings(Note 1) (Note 2)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to +7.5V
Supply Voltage (V _{EE})	+0.5 to -7.5V
DC Control Input Voltage (VIN)	-1.5 to V _{CC} $+1.5$ V
DC Switch I/O Voltage (VIO)	$\rm V_{EE}{-}0.5$ to $\rm V_{CC}$ +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

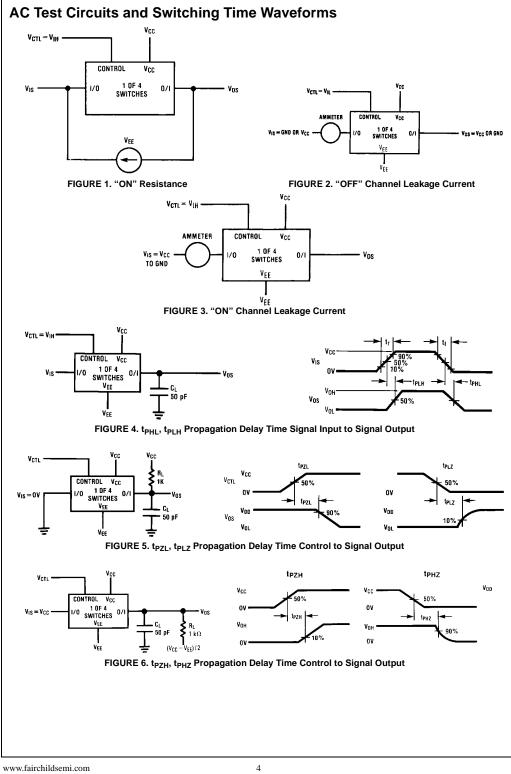
	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
Supply Voltage (V _{EE})	0	-6	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
$V_{CC} = 12.0V$		250	ns
Note 1: Absolute Maximum Ratings are those	e values	beyond wh	ich dam-

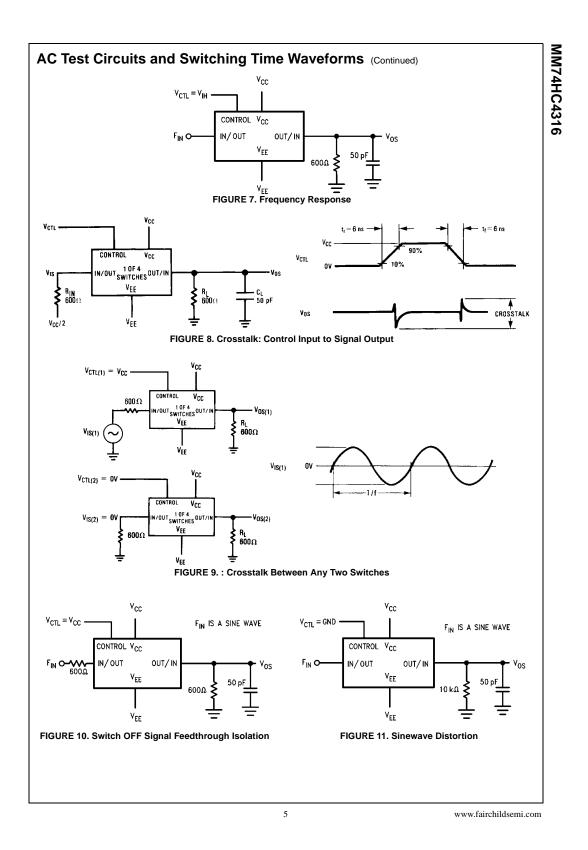
Note 2: Unless otherwise specified all voltages are referenced to ground.

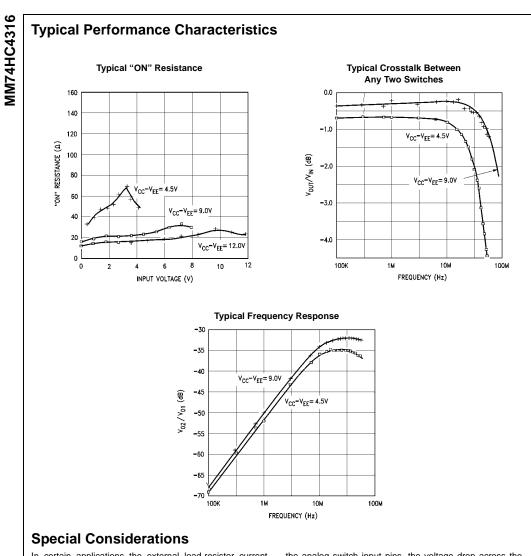
Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

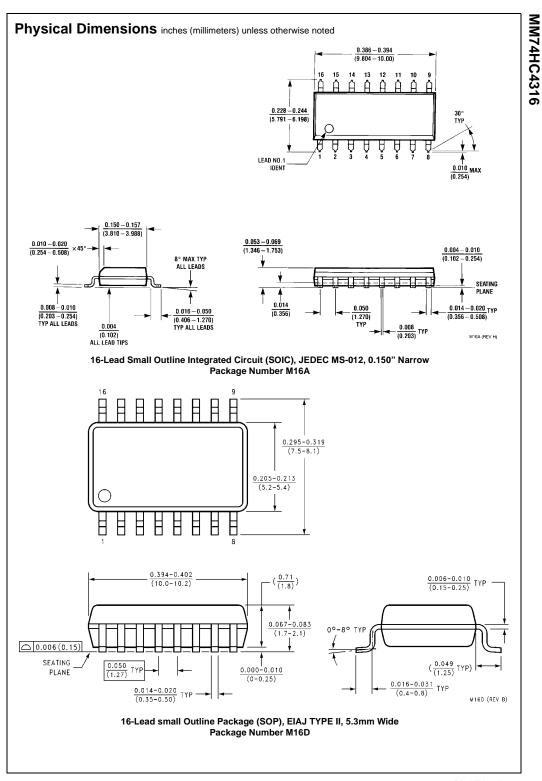
Symbol	Parameter	Conditions	V _{EE}	V _{CC}	T _A =	25°C	$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
	Falameter				Тур		Guaranteed I	imits	Units
V _{IH}	Minimum HIGH Level			2.0V		1.5	1.5	1.5	V
	Input Voltage			4.5V		3.15	3.15	3.15	V
				6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level			2.0V		0.5	0.5	0.5	V
	Input Voltage			4.5V		1.35	1.35	1.35	V
				6.0V		1.8	1.8	1.8	V
R _{ON}	Minimum "ON" Resistance	$V_{CTL} = V_{IH}, I_S = 2.0 \text{ mA}$	GND	4.5V	100	170	200	220	Ω
	(Note 5)	$V_{IS} = V_{CC}$ to V_{EE}	-4.5V	4.5V	40	85	105	110	Ω
		(Figure 1)	-6.0V	6.0V	30	70	85	90	Ω
			GND	2.0V	100	180	215	240	Ω
		$V_{CTL} = V_{IH}, I_S = 2.0 \text{ mA}$	GND	4.5V	40	80	100	120	Ω
		$V_{IS} = V_{CC}$ or V_{EE}	-4.5V	4.5V	50	60	75	80	Ω
		(Figure 1)	-6.0V	6.0V	20	40	60	70	Ω
R _{ON}	Maximum "ON" Resistance	V _{CTL} = V _{IH}	GND	4.5V	10	15	20	20	Ω
	Matching	$V_{IS} = V_{CC}$ to V_{EE}	-4.5V	4.5V	5	10	15	15	Ω
			-6.0V	6.0V	5	10	15	15	Ω
I _{IN}	Maximum Control	$V_{IN} = V_{CC}$ or GND	GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Input Current								
I _{IZ}	Maximum Switch "OFF"	$V_{OS} = V_{CC} \text{ or } V_{EE}$	GND	6.0V		±60	±600	±600	nA
Le	Leakage Current	$V_{IS} = V_{EE} \text{ or } V_{CC}$	-6.0V	6.0V		±100	±1000	±1000	nA
		$V_{CTL} = V_{IL}$ (Figure 2)							
I _{IZ}	Maximum Switch "ON"	$V_{IS} = V_{CC}$ to V_{EE}	GND	6.0V		±40	±150	±150	nA
	Leakage Current	$V_{CTL} = V_{IH}, V_{OS} = OPEN$	-6.0V	6.0V		±60	±300	±300	nA
		(Figure 3)							
Icc	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	GND	6.0V		2.0	20	40	μΑ
	Supply Current	I _{OUT} = 0 μA	-6.0V	6.0V		8.0	80	160	μA

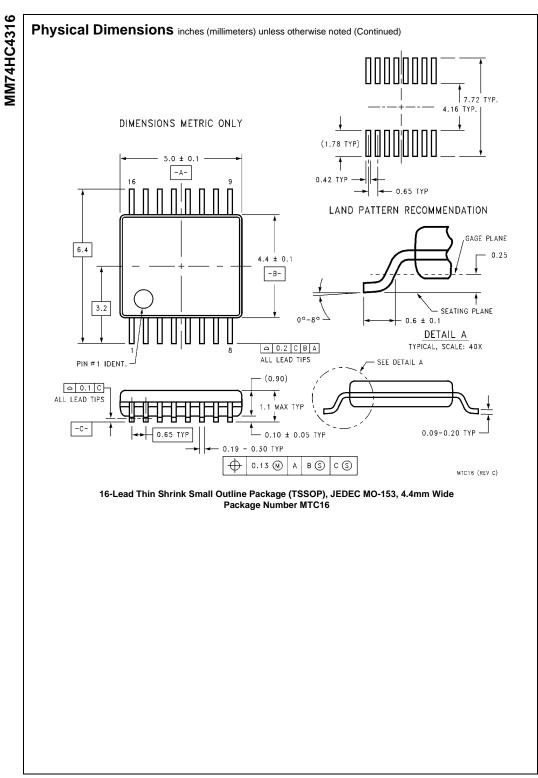

Note 4: For a power supply of 5V \pm 10% the worst case on resistances (R_{ON}) occurs for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5V values should be used.

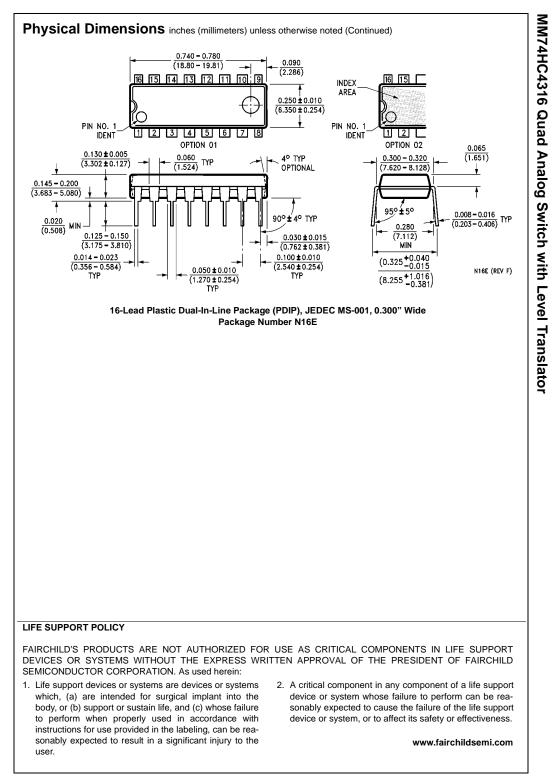

Note 5: A supply voltages (V_{CC} - V_{EC}) approaching 2V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.


	Devenueter	Conditions	v	v	$T_A = \cdot$	+25°C	$T_{A}=-40^{\circ}C$ to $+85^{\circ}C$	$T_A = -55^{\circ}C$ to $+125^{\circ}C$	1.1
Symbol	Parameter	Conditions	VEE	v _{cc}	Тур		Guaranteed	Limits	Unit
PHL,	Maximum Propagation		GND	2.0V	25	50	63	75	ns
PLH	Delay Switch		GND	4.5V	5	10	13	15	ns
	In to Out		-4.5V	4.5V	4	8	12	14	ns
			-6.0V	6.0V	3	7	11	13	ns
PZL,	Maximum Switch	$R_L = 1 k\Omega$	GND	2.0V	30	165	206	250	ns
PZH	Turn "ON" Delay		GND	4.5V	20	35	43	53	ns
	(Control)		-4.5V	4.5V	15	32	39	48	ns
			-6.0V	6.0V	14	30	37	45	ns
PHZ,	Maximum Switch	$R_L = 1 k\Omega$	GND	2.0V	45	250	312	375	ns
PLZ	Turn "OFF" Delay		GND	4.5V	25	50	63	75	ns
	(Control)		-4.5V	4.5V	20	44	55	66	ns
			-6.0V	6.0V	20	44	55	66	
PZL,	Maximum Switch		GND	2.0V	35	205	256	308	ns
t _{PZH}	Turn "ON" Delay		GND	4.5V	20	41	52	62	ns
	(Enable)		-4.5V	4.5V	19	38	48	57	ns
	· · · ·		-6.0V	6.0V	18	36	45	54	ns
PLZ,	Maximum Switch		GND		58	265	330	400	ns
PHZ	Turn "OFF" Delay		GND	4.5V	28	53	67	79	ns
FIL	(Enable)		-4.5V		23	47	59	70	ns
	(Enable)		-6.0V		21	47	59	70	ns
MAX	Minimum Frequency	$R_{I} = 600\Omega, V_{IS} = 2V_{PP}$	0V	4.5	40				MH
IVIAA	Response (Figure 7)	at (V _{CC} -V _{FF} /2)	-4.5V		100				мн
	20 log (V _{OS} /V _{IS})= -3 dB		4.01	4.01	100				
	Control to Switch	$R_L = 600\Omega$, F = 1 MHz	0V	4.5V	100				m۷
	Feedthrough Noise	$C_{L} = 50 \text{ pF}$	-4.5V		250				m∖
	(Figure 8)	(Note 7) (Note 8)	-4.5 V	4.50	230				mv
	Crosstalk Between								
		$R_L = 600\Omega$, $F = 1 MHz$	0V	4.5V	50				-10
	any Two Switches		-4.5V		-52				dB
	(Figure 9)	$R_L = 600\Omega$, $F = 1 MHz$	-4.5V	4.5V	-50				dB
	Switch OFF Signal		01/	4 51/	10				
	Feedthrough Isolation	$V_{CTL} = V_{IL},$	0V	4.5V	-42				dB
	(Figure 10)	(Note 7) (Note 8)	-4.5V	4.5V	-44				dB
THD	Sinewave Harmonic	$R_L = 10 \text{ K}\Omega, C_L = 50 \text{ pF},$							
	Distortion	F = 1 KHz							
	(Figure 11)	$V_{IS} = 4V_{PP}$	0V	4.5V	0.013				%
		V _{IS} = 8V _{PP}	-4.5V	4.5V	0.008				%
CIN	Maximum Control				5				pF
	Input Capacitance								
CIN	Maximum Switch				35				pF
	Input Capacitance								
C _{IN}	Maximum Feedthrough	V _{CTL} = GND			0.5				pF
	Capacitance								
C _{PD}	Power Dissipation				15				pF
	Capacitance								
Note 6:	Adjust 0 dBm for F = 1 KHz	(Null R _L /Ron Attenuation).							
Note 7:	VIS is centered at VCC-VEE	/2.							
Note 7:									

MM74HC4316







In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into

the analog switch input pins, the voltage drop across the switch must not exceed 0.6V (calculated from the ON resistance).

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.