FAIRCHILD

BEMICONDUCTOR TM

MM74HC573 3-STATE Octal D-Type Latch

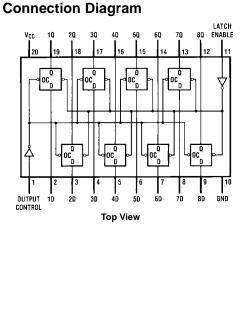
General Description

The MM74HC573 high speed octal D-type latches utilize advanced silicon-gate P-well CMOS technology. They possess the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads. Due to the large output drive capability and the 3-STATE feature, these devices are ideally suited for interfacing with bus lines in a bus organized system.

When the LATCH ENABLE(LE) input is HIGH, the Q outputs will follow the D inputs. When the LATCH ENABLE goes LOW, data at the D inputs will be retained at the outputs until LATCH ENABLE returns HIGH again. When a HIGH logic level is applied to the OUTPUT CONTROL OC input, all outputs go to a HIGH impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

September 1983

Revised May 2000


The 74HC logic family is speed, function and pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical propagation delay: 18 ns
- Wide operating voltage range: 2 to 6 volts
- Low input current: 1 μA maximum
- Low quiescent current: 80 µA maximum (74HC Series)
- Compatible with bus-oriented systems
- Output drive capability: 15 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description						
MM74HC573WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide						
MM74HC573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide						
MM74HC573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide						
MM74HC573N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide						
Devices also available	Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.							

Output Control	Latch Enable	Data	Output
L	Н	Н	Н
L	н	L	L
L	L	х	Q ₀
н	Х	х	Z

L = LOW Level

Q₀ = Level of output before steady-state input conditions were established. Z = High Impedance X = Don't Care

er number	Package Number	Package Description
HC573WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.
HC573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
HC573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-1
HC573N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.30
s also available i	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.
nnectior	n Diagram	Truth Table
		LATCH

© 2000 Fairchild Semiconductor Corporation DS005212 www.fairchildsemi.com

MM74HC573 3-STATE Octal D-Type Latch

Absolute Maximum Ratings(Note 1) (Note 2)

()	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	–1.5 to V_{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V _{IN} , V _{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 1: Absolute Maximum Ratings are those va	alues be	yond wh	ich dam-

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

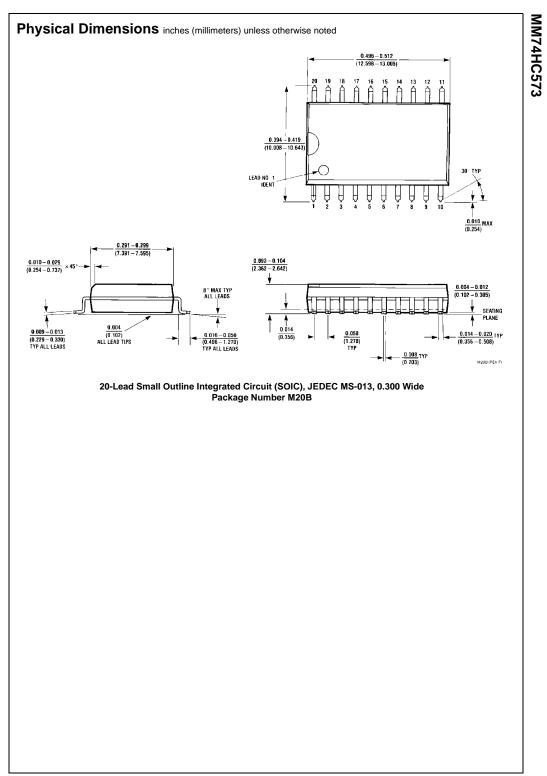
Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	i alameter			Тур	Guaranteed Limits			Units
VIH	Minimum HIGH Level Input		2.0V		1.5	1.5	1.5	V
	Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
VIL	Maximum LOW Level Input		2.0V		0.5	0.5	0.5	V
	Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Voltage	I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		I _{OUT} ≤ 6.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤ 7.8 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level Output	$V_{IN} = V_{IH}$ or V_{IL}						
	Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		I _{OUT} ≤ 6.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤ 7.8 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{OZ}	Maximum 3-STATE Output	$V_{OUT} = V_{CC}$ or GND						
	Leakage Current	$OC = V_{IH}$	6.0V		±0.5	±5.0	±10	μA
I _{CC}	Maximum Quiescent Supply	$V_{IN} = V_{CC}$ or GND				1		
	Current	$I_{OUT} = 0 \ \mu A$	6.0V		8.0	80	160	μΑ
ΔI_{CC}	Quiescent Supply Current	V _{CC} = 5.5V	OE	1.0	1.5	1.8	2.0	mA
	per Input Pin	$V_{IN} = 2.4V$	LE	0.6	0.8	1.0	1.1	mA
		or 0.4V (Note 4)	DATA	0.4	0.5	0.6	0.7	mA

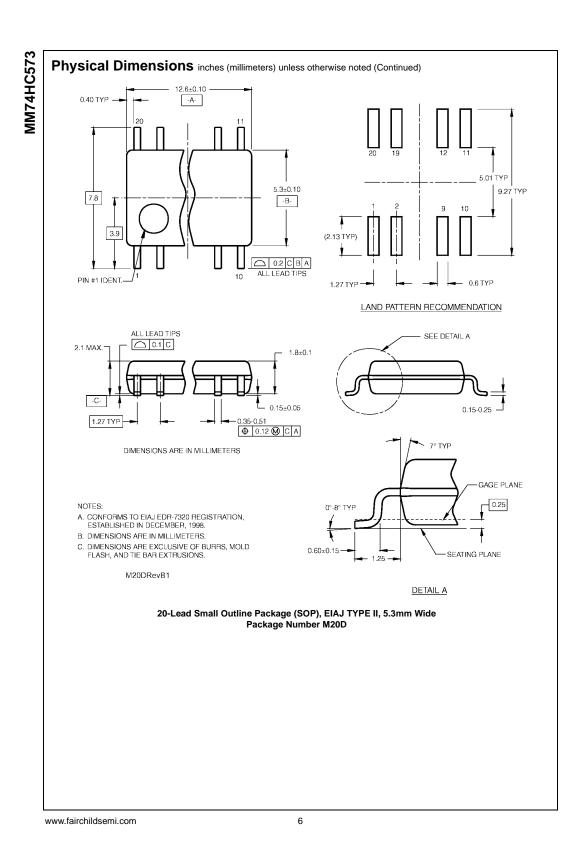
Note 4: For a power supply of 5V \pm 10% the worst-case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst-case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst-case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

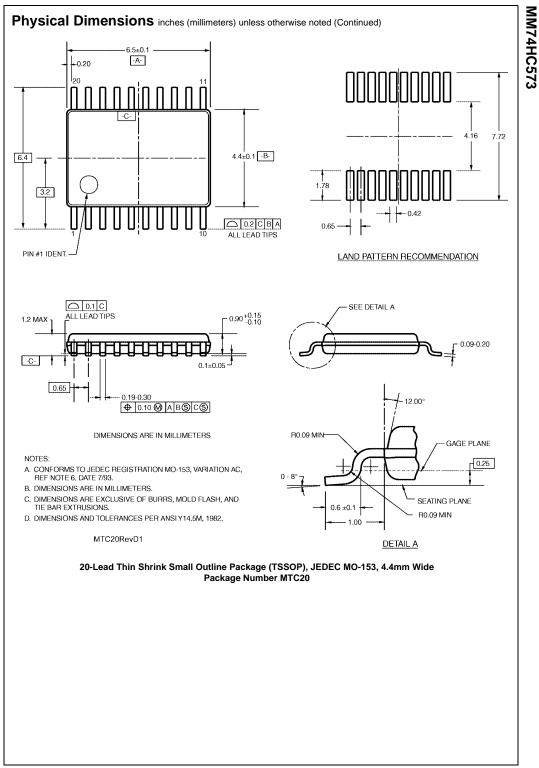
AC Electrical Characteristics

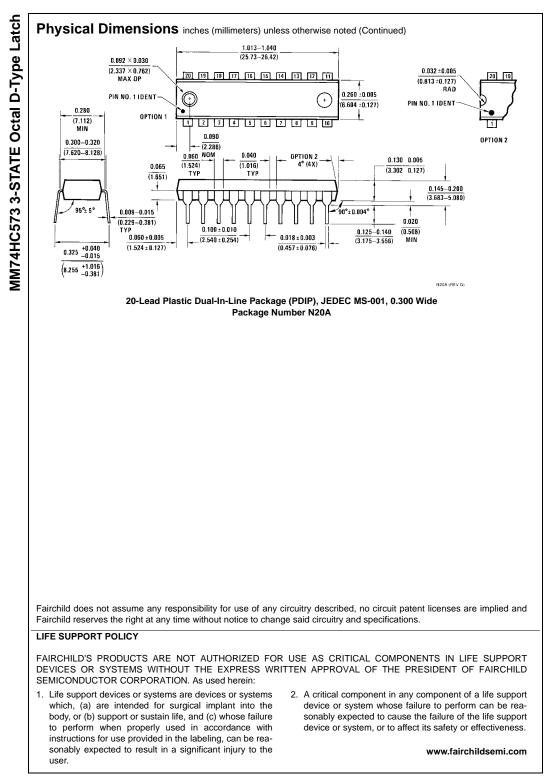
	ctrical Characteristics = 25° C, $t_r = t_{f} = 6$ ns				
Symbol	Parameter	Conditions	Тур	Guaranteed	Units
Symbol	Faiameter	conditions	iyp	Limit	onno
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Data to Q	C _L = 45 pF	16	20	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, LE to Q	C _L = 45 pF	14	22	ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 k\Omega$	15	27	ns
		C _L = 45 pF			
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$ $C_L = 5 pF$	13	23	ns
		$C_L = 5 pF$			
ts	Minimum Set Up Time, Data to LE		10	15	ns
t _H	Minimum Hold Time, LE to Data		2	5	ns
t _W	Minimum Pulse Width, LE or Data		10	16	ns

AC Electrical Characteristics


Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units	
Symbol	Parameter	Conditions	VCC	Тур		Guaranteed L	imits	Units	
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 50 pF	2.0V	45	110	138	165	ns	
	Delay Data to Q	C _L = 150 pF	2.0V	58	150	188	225	ns	
		C _L = 50 pF	4.5V	17	22	28	33	ns	
		C _L = 150 pF	4.5V	21	30	38	40	ns	
		C _L = 50 pF	6.0V	15	19	24	29	ns	
		C _L = 150 pF	6.0V	19	26	33	39	ns	
t _{PHL} , t _{PLH}	Maximum Propagation	C _L = 50 pF	2.0V	46	115	138	165	ns	
	Delay, LE to Q	$C_L = 150 \text{ pF}$	2.0V	60	155	194	233	ns	
		C _L = 50 pF	4.5V	14	23	29	35	ns	
		$C_L = 150 \text{ pF}$	4.5V	21	31	47	47	ns	
		C _L = 50 pF	6.0V	12	20	25	30	ns	
		$C_L = 150 \text{ pF}$	6.0V	19	27	34	41	ns	
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$							
	Time	C _L = 50 pF	2.0V	55	140	175	210	ns	
		$C_L = 150 \text{ pF}$	2.0V	67	180	225	270	ns	
		C _L = 50 pF	4.5V	15	28	35	42	ns	
		$C_L = 150 \text{ pF}$	4.5V	24	36	45	54	ns	
		C _L = 50 pF	6.0V	14	24	30	36	ns	
		$C_L = 150 \text{ pF}$	6.0V	22	31	39	47	ns	
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$R_L = 1 k\Omega$	2.0V	40	125	156	188	ns	
	Time	$C_L = 50 \text{ pF}$	4.5V	13	25	31	38	ns	
			6.0V	12	21	27	32	ns	
t _S	Minimum Set Up Time		2.0V	30	75	95	110	ns	
	Data to LE		4.5V	10	15	19	22	ns	
			6.0V	9	13	16	19	ns	
t _H	Minimum Hold Time		2.0V		25	31	38	ns	
	LE to Data		4.5V		5	6	7	ns	
			6.0V		4	5	6	ns	
t _W	Minimum Pulse Width LE,		2.0V	30	80	100	120	ns	
	or Data		4.5V	9	16	20	24	ns	
			6.0V	8	14	18	20	ns	
t _{TLH} , t _{THL}	Maximum Output Rise	C _L = 50 pF	2.0V	25	60	75	90	ns	
	and Fall Time, Clock		4.5V	7	12	15	18	ns	
			6.0V	6	10	13	15	ns	
C _{PD}	Power Dissipation Capacitance	$OC = V_{CC}$		5				pF	
	(Note 5) (per latch)	OC = GND		52				pF	
C _{IN}	Maximum Input			5	10	10	10	pF	
	Capacitance								


MM74HC573


AC Electrical Characteristics (Continued)


Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
0,		Containente	- 00	Тур		Guaranteed Limits		
C _{OUT}	Maximum Output			15	20	20	20	pF
	Capacitance							

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 \dagger + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} \dagger + I_{CC}$.

