September 1983

Revised February 1999

MM74HC589

8-Bit Shift Registers with Input Latches and 3-STATE Serial Output

General Description

The MM74HC589 high speed shift register utilizes advanced silicon-gate CMOS technology to achieve the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads.
The MM74HC589 comes in a 16 -pin package and consists of an 8 -bit storage latch feeding a parallel-in, serial-out 8 bit shift register. Data can also be entered serially the shift register through the SER pin. Both the storage register and shift register have positive-edge triggered clocks, RCK and SCK, respectively. SLOAD pin controls parallel LOAD or serial shift operations for the shift register. The shift register has a 3-STATE output to enable the wire-ORing of multiple devices on a serial bus.

The 74 HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

■ 8-bit parallel storage register inputs

- Wide operating voltage range: $2 \mathrm{~V}-6 \mathrm{~V}$
- Shift register has direct overriding load
- Guaranteed shift frequency. . . DC to 30 MHz
- Low quiescent current: $80 \mu \mathrm{~A}$ maximum (74HC Series)

■ 3-STATE output for 'Wire-OR'

Absolute Maximum Ratings(Note 1)

(Note 2)
Supply Voltage (V_{CC})
DC Input Voltage (V_{IN})
DC Output Voltage ($\mathrm{V}_{\text {OUT }}$)
Clamp Diode Current ($\mathrm{I}_{\mathrm{IK}}, \mathrm{I}_{\mathrm{OK}}$)
DC Output Current, per pin (lout)
DC V_{CC} or GND Current, per pin (I_{CC})
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
Power Dissipation (P_{D})
(Note 3)
S.O. Package only

Lead Temperature (T_{L})
(Soldering 10 seconds)

Recommended Operating

 Conditions| | Min | Max | Units |
| :--- | :---: | :---: | :---: |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 2 | 6 | V |
| DC Input or Output Voltage | | | |
| $\left(\mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{OUT}}\right)$ | | | |

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$	Units
				Typ		Guaranteed L	mits	
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level		2.0 V		1.5	1.5	1.5	V
	Input Voltage		4.5 V		3.15	3.15	3.15	V
			6.0 V		4.2	4.2	4.2	V
VIL	Maximum LOW Level		2.0 V		0.5	0.5	0.5	V
	Input Voltage		4.5 V		1.35	1.35	1.35	V
			6.0 V		1.8	1.8	1.8	V
$\overline{\mathrm{V}} \mathrm{OH}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$						
			2.0 V	2.0	1.9	1.9	1.9	V
			4.5 V	4.5	4.4	4.4	4.4	V
			6.0 V	6.0	5.9	5.9	5.9	V
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$						
		$\|\mathrm{IOUT}\| \leq 6.0 \mathrm{~mA}$	4.5 V		3.98	3.84	3.7	V
		$\mid \mathrm{lOUT} \leq 5.8 \mathrm{~mA}$	6.0 V		5.48	5.34	5.2	V
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$						
			2.0 V	0	0.1	0.1	0.1	V
			4.5 V	0	0.1	0.1	0.1	V
			6.0 V	0	0.1	0.1	0.1	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{l}_{\text {OUT }}\right\| \leq 6.0 \mathrm{~mA} \\ & \left\|\mathrm{l}_{\text {OUT }}\right\| \leq 7.8 \mathrm{~mA} \end{aligned}$						
			4.5 V		0.26	0.33	0.4	V
			6.0 V		0.26	0.33	0.4	V
IN	Maximum Input	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
	Current							
$I_{C C}$	Maximum Quiescent	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V		8.0	80	160	$\mu \mathrm{A}$
	Supply Current	$\mathrm{l}_{\mathrm{OUT}}=0 \mu \mathrm{~A}$						
l I	Maximum 3-STATE Leakage Current	Output in High Impedance State $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	6.0 V		± 0.5	± 5.0	± 10.0	$\mu \mathrm{A}$

designing with this supply. Worst case $\mathrm{V}_{I H}$ and $\mathrm{V}_{I L}$ occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The $\mathrm{V}_{I H}$ value at 5.5 V is 3.85 V .) The worst case leakage current ($I_{\mathrm{I}_{\mathrm{N}}}, \mathrm{I}_{\mathrm{CC}}$, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.

68SOHtLWW

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Symbol	Parameter	Conditions	Typ	Guaranteed Limit	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency for SCK		50	30	MHz
$\mathrm{t}_{\text {PHL }}$, $\mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from SCK to $\mathrm{Q}_{\mathrm{H}^{\prime}}$			30	ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from $\overline{\text { SLOAD }}$ to $\mathrm{Q}_{\mathrm{H}^{\prime}}$			30	ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from LCK to $\mathrm{Q}_{\mathrm{H}^{\prime}}$	$\overline{\text { SLOAD }}=$ logic "0"	25	45	ns
$\mathrm{t}_{\text {PZH, }}$, $\mathrm{t}_{\text {PZL }}$	Output Enable Time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	18	28	ns
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLZ }}$	Output Disable Time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	19	25	ns
$\mathrm{t}_{\text {S }}$	Minimum Setup Time from RCK to SCK		10	20	ns
ts	Minimum Setup Time from SER to SCK		10	20	ns
$\mathrm{t}_{\text {S }}$	Minimum Setup Time from Inputs A thru H to RCK		10	20	ns
t_{H}	Minimum Hold Time		0	5	ns
${ }_{\text {t }}$ W	Minimum Pulse Width SCK, RCK, SLOAD		8	16	ns

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0-6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$	Units
				Typ	Guaranteed Limits			
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency for SCK		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 6 \\ 30 \\ 35 \end{gathered}$	$\begin{aligned} & \hline 4.8 \\ & 24 \\ & 28 \end{aligned}$	$\begin{gathered} 4 \\ 20 \\ 24 \end{gathered}$	MHz MHz MHz
$\overline{t_{\text {PHL }}, t_{\text {PLH }}}$	Maximum Propagation Delay from SCK or $\overline{\text { SLOAD }}$ to Q_{H}		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 62 \\ & 20 \\ & 18 \end{aligned}$	$\begin{gathered} \hline 175 \\ 35 \\ 30 \end{gathered}$	$\begin{gathered} \hline 220 \\ 44 \\ 37 \end{gathered}$	$\begin{gathered} \hline 265 \\ 53 \\ 45 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\overline{t_{\text {PHL }}, t_{\text {PLH }}}$	$\begin{aligned} & \text { Maximum Propagation } \\ & \text { Delay from } S C K \text { or } \\ & \overline{\text { SLOAD }} \text { to } Q_{H} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 120 \\ 31 \\ 28 \end{gathered}$	$\begin{gathered} \hline 225 \\ 45 \\ 38 \end{gathered}$	$\begin{gathered} \hline 280 \\ 56 \\ 48 \end{gathered}$	$\begin{gathered} \hline 340 \\ 68 \\ 58 \end{gathered}$	ns ns ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay from RCK to Q_{H}		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 25 \\ & 21 \end{aligned}$	$\begin{aligned} & 210 \\ & 42 \\ & 36 \end{aligned}$	$\begin{gathered} 265 \\ 53 \\ 45 \end{gathered}$	$\begin{gathered} \hline 315 \\ 63 \\ 54 \end{gathered}$	ns ns ns
$\overline{t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}}$	Maximum Propagation Delay RCK to Q_{H}	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 25 \\ & 21 \end{aligned}$	$\begin{gathered} \hline 210 \\ 52 \\ 44 \end{gathered}$	$\begin{gathered} \hline 265 \\ 66 \\ 56 \end{gathered}$	$\begin{gathered} \hline 313 \\ 77 \\ 66 \end{gathered}$	ns ns ns
$\overline{t_{\text {PZH }}, t_{\text {PZL }}}$	Output Enable Time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 22 \\ & 20 \end{aligned}$	$\begin{gathered} \hline 150 \\ 30 \\ 26 \end{gathered}$	$\begin{gathered} \hline 189 \\ 38 \\ 32 \end{gathered}$	$\begin{gathered} \hline 224 \\ 45 \\ 38 \end{gathered}$	ns ns ns
$\overline{t_{\text {PHZ }}, t_{\text {PLZ }}}$	Output Disable Time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 70 \\ & 22 \\ & 20 \end{aligned}$	$\begin{gathered} 150 \\ 30 \\ 26 \end{gathered}$	$\begin{gathered} \hline 189 \\ 38 \\ 32 \end{gathered}$	$\begin{gathered} \hline 224 \\ 45 \\ 38 \end{gathered}$	ns ns ns
${ }_{\text {ts }}$	Minimum Setup Time from RCK to SCK		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 100 \\ 20 \\ 17 \end{gathered}$	$\begin{gathered} \hline 125 \\ 25 \\ 22 \end{gathered}$	$\begin{gathered} \hline 150 \\ 30 \\ 25 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {ts }}$	Minimum Setup Time from SER to SCK		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 100 \\ 20 \\ 17 \end{gathered}$	$\begin{gathered} \hline 125 \\ 25 \\ 22 \end{gathered}$	$\begin{gathered} 150 \\ 30 \\ 25 \end{gathered}$	ns ns ns
t_{s}	Minimum Setup Time from Inputs A thru H to RCK		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 100 \\ 20 \\ 17 \end{gathered}$	$\begin{gathered} 125 \\ 25 \\ 22 \end{gathered}$	$\begin{aligned} & 150 \\ & 30 \\ & 25 \end{aligned}$	ns ns ns
t_{H}	Minimum Hold Time		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline-5 \\ 0 \\ 1 \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	ns ns ns
t_{W}	$\begin{aligned} & \text { Minimum Pulse Width } \\ & \text { SCK, RCK, } \overline{\text { SLOAD, }} \\ & \overline{\text { SLOAD }} \end{aligned}$		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 30 \\ 9 \\ 8 \end{gathered}$	$\begin{aligned} & 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{gathered} 100 \\ 20 \\ 17 \end{gathered}$	$\begin{aligned} & 120 \\ & 24 \\ & 20 \end{aligned}$	ns ns ns

AC Electrical Characteristics (Continued)

Note 5: $C_{P D}$ determines the no load dynamic power consumption, $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$, and the no load dynamic current consumption, $\mathrm{I}_{\mathrm{S}}=\mathrm{C}_{\mathrm{PD}} \mathrm{V}_{\mathrm{CC}} \mathrm{sf}+\mathrm{I}_{\mathrm{CC}}$.

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

