FAIRCHILD

BEMICONDUCTOR IM

MM74HCT245 Octal 3-STATE Transceiver

General Description

The MM74HCT245 3-STATE bi-directional buffer utilizes advanced silicon-gate CMOS technology and is intended for two-way asynchronous communication between data buses. It has high drive current outputs which enable high speed operation even when driving large bus capacitances. This circuit possesses the low power consumption of CMOS circuitry, yet has speeds comparable to low power Schottky TTL circuits.

This device is TTL input compatible and can drive up to 15 LS-TTL loads, and all inputs are protected from damage due to static discharge by diodes to $V_{\mbox{\scriptsize CC}}$ and ground.

The MM74HCT245 has one active low enable input $(\overline{G}),$ and a direction control (DIR). When the DIR input is HIGH,

data flows from the A inputs to the B outputs. When DIR is LOW, data flows from B to A.

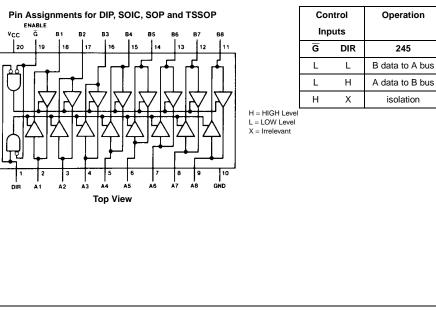
February 1984

Revised February 1999

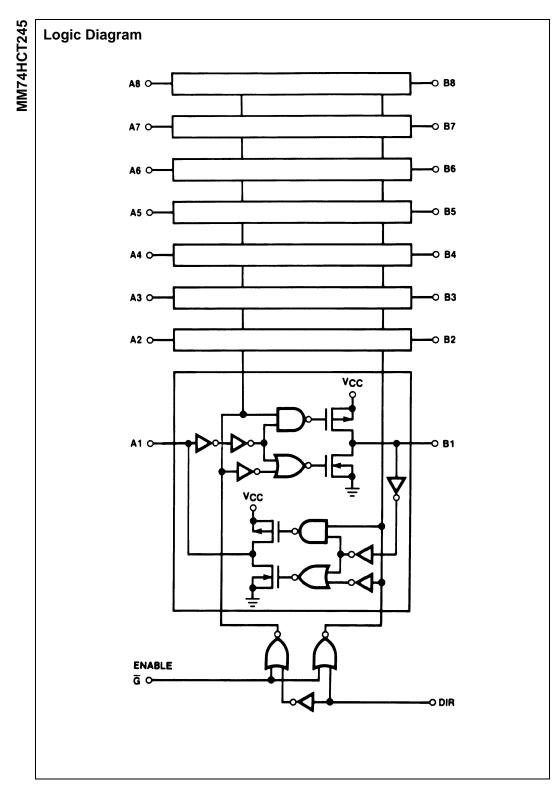
MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

Features

- TTL input compatible
- 3-STATE outputs for connection to system busses
- High output drive current: 6 mA (min)
- High speed: 16 ns typical propagation delay
- Low power: 80 µA (74HCT Series)


Ordering Code:

Order Number	Package Number	Package Description				
MM74HCT245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide				
MM74HCT245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
MM74HCT245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
MM74HCT245N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

© 1999 Fairchild Semiconductor Corporation DS005366.prf

Absolute Maximum Ratings(Note 1) (Note 2)

Recommended Operating	
Conditions	

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC}{+}1.5V$
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current,	±35 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

Units Min Max Supply Voltage (V_{CC}) 5.5 V 4.5 DC Input or Output Voltage 0 V (V_{IN}, V_{OUT}) V_{CC} Operating Temperature Range (T_A) -40 +85 °C Input Rise or Fall Times (t_r, t_f) 500 ns Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics

 $(V_{CC} = 5V \pm 10\%)$, unless otherwise specified.)

Symbol	Parameter	Conditions	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Farameter	Conditions	Тур		Guaranteed L	Units	
V _{IH}	Minimum HIGH Level			2.0	2.0	2.0	V
	Input Voltage						
VIL	Maximum LOW Level			0.8	0.8	0.8	V
	Input Voltage						
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Output Voltage	$ I_{OUT} = 20 \ \mu A$	V _{CC}	V _{CC} - 0.1	V _{CC} - 0.1	V _{CC} - 0.1	V
		$ I_{OUT} = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V
		$ I_{OUT} = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.2	4.98	4.84	4.7	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Voltage	$ I_{OUT} = 20 \ \mu A$	0	0.1	0.1	0.1	V
		$ I_{OUT} = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	V
		$ I_{OUT} = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.1	±1.0	±1.0	μA
	Current	V_{IH} or V_{IL} , Pin 1 or 19					
I _{OZ}	Maximum 3-STATE	V _{OUT} = V _{CC} or GND		±0.5	±5.0	±10	μΑ
	Output Leakage	$\overline{G} = V_{IH}$					
	Current						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND		8	80	160	μΑ
	Supply Current	I _{OUT} = 0 μA					
		V _{IN} = 2.4V or 0.5V (Note 4)	0.6	1.0	1.3	1.5	mA

MM74HCT245

ŝ
4
2
-
C
Ť
4
Ň
5
\leq
>

AC Electrical Characteristics

 $V_{CC}=5.0V,\,t_r=t_f=6$ ns, $T_A=25^\circ C$ (unless otherwise specified)

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Output	C _L = 45 pF	16	20	ns
	Propagation Delay				
t _{PZL} , t _{PZH}	Maximum Output	$C_L = 45 \text{ pF}$ $R_L = 1 \text{ k}\Omega$	29	40	ns
	Enable Time	$R_L = 1 k\Omega$			
t _{PLZ} , t _{PHZ}	Maximum Output	C _L = 5 pF	20	25	ns
	Disable Time	$R_L = 1 k\Omega$			

Units ns ns ns

> ns ns ns

pF

pF

pF

AC Electrical Characteristics

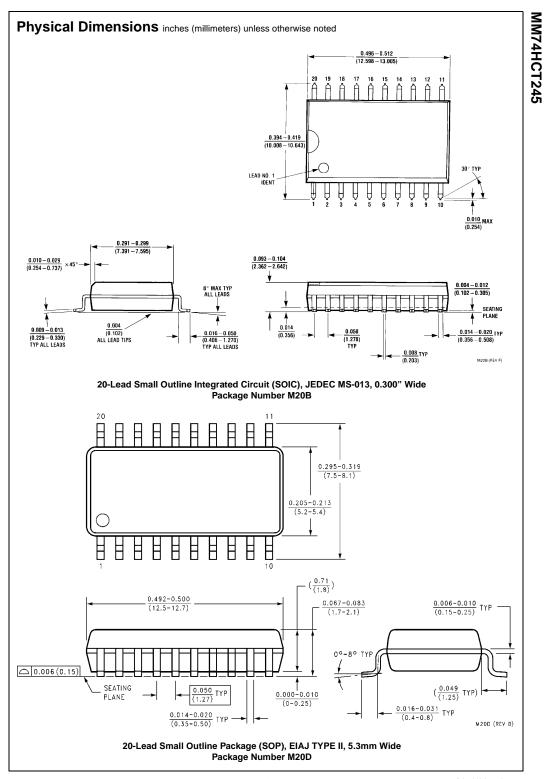
Capacitance

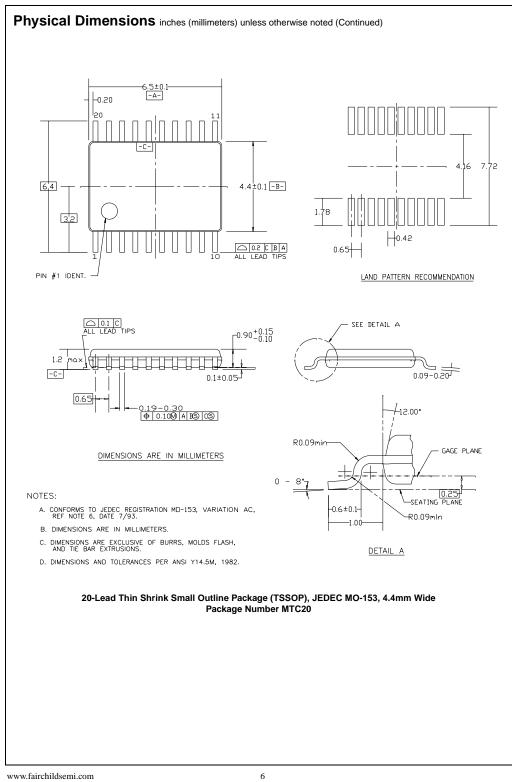
Capacitance

Power Dissipation

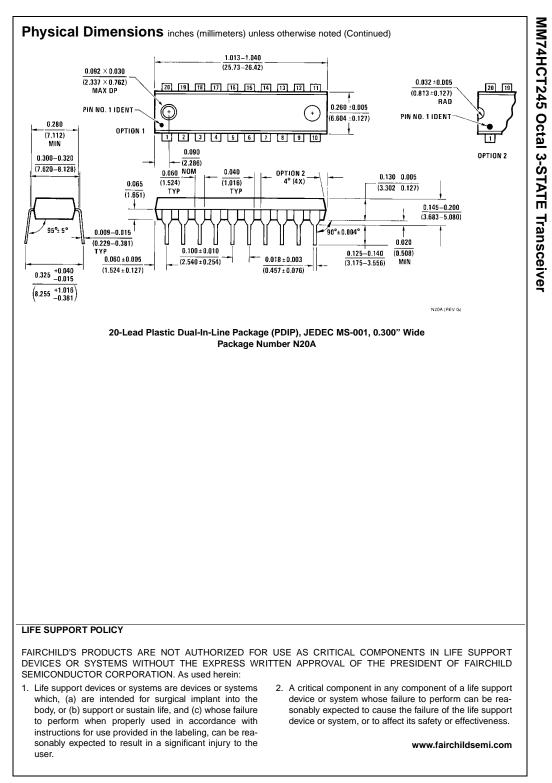
C_{PD}

Symbol	Parameter	Conditions	Τ _Α =	25°C	$T_A = -40 \text{ to } 85^\circ C$	T _A = -55 to 125°C
		Conditions	Тур	Guaranteed Limits		mits
t _{PHL} , t _{PLH}	Maximum Output	C _L = 50 pF	17	23	29	34
	Propagation Delay	C _L = 150 pF	24	30	38	45
t _{PZL}	Maximum Output	$R_L = 1 k\Omega$	31	42	53	63
	Enable Time	C _L = 50 pF				
t _{PZH}	Maximum Output	$R_L = 1 k\Omega$	23	33	41	49
	Enable Time	C _L = 50 pF				
t _{PHZ} , t _{PLZ}	Maximum Output	$R_L = 1 k\Omega$	21	30	38	45
	Disable Time	C _L = 50 pF				
t _{THL} , t _{TLH}	Maximum Output	C _L = 50 pF	8	12	15	18
	Rise and Fall Time					
CIN	Maximum Input		10	15	15	15
	Capacitance					
COUT	Maximum Output/Input		20	25	25	25


Note 5: CP_D determines the no load power consumption, $P_D = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.


7

100


 $\overline{G} = V_{CC}$ (Note 5)

 $\overline{G} = GND$

MM74HCT245

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.