

Absolute Maximum Ratings(Note 2)			V_{Cc}				18 V					
		$-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	Lead Temperature									
Operating Temperature Range $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			(soldering, 10 seconds)				$260^{\circ} \mathrm{C}$					
Storag	Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Tempera-									
Power Dissipation												
Dual-In-Line		700 mW	ture Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristic table provides conditions									
Sma	Outline	500 mW	for actual device op									
Operating V_{CC} Range		3.0 V to 15 V										
DC Electrical Characteristics												
Min/Max limits apply across temperature range unless otherwise noted.												
Symbol	Parameter	Cond	ditions	Min	Typ	Max	Units					
CMOS to CMOS												
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		3.5			v					
		$\mathrm{v}_{\mathrm{CC}}=10 \mathrm{~V}$		8.0			v					
$\overline{\mathrm{V}_{\text {IN(0) }}}$	Logical "0" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$				1.5	V					
		$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$				2.0	V					
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \end{aligned}$		4.5			v					
				9.0			v					
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+10 \end{aligned}$				0.5	V					
						1.0	V					
$\overline{\operatorname{lN}(1)}$	Logical "1" Input Current	$\mathrm{V}_{\text {CC }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$			0.005	1.0	V					
$\underline{1 N(0)}$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		-1.0	-0.005		$\mu \mathrm{A}$					
loz	Output Current in High Impedance State MM82C19	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \end{aligned}$		-1.0	$\begin{gathered} 0.005 \\ -0.005 \end{gathered}$	1.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$					
Icc	Supply Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$			0.05	300	$\mu \mathrm{A}$					
CMOS/LPTTL Interface												
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$74 \mathrm{C}, 82 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		V_{CC}-1.5			V					
$\mathrm{V}_{\underline{1 N(0)}}$	Logical "0" Input Voltage	$74 \mathrm{C}, 82 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$				0.8	V					
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage	$74 \mathrm{C}, 82 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-1.6 \mathrm{~mA}$		2.4			V					
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage	$74 \mathrm{C}, 82 \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$				0.4	V					
Output Drive (Short Circuit Current)												
Isource	$\begin{aligned} & \text { Output Source Current } \\ & \text { (P-Channel) } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-8		mA					
ISOURCE	Output Source Current (P-Channel)	$\mathrm{V}_{\text {CC }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-20	-40		mA					
$\mathrm{I}_{\text {SINK }}$	Output Sink Current (N-Channel)	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.35	8		mA					
$\overline{I_{\text {SINK }}}$	Output Sink Current (N-Channel)	$\mathrm{V}_{\text {CC }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	40		mA					

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.600" Wide Package Number N24A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
