FAIRCHILD

SEMICONDUCTOR

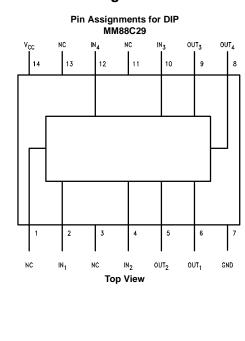
October 1987 Revised January 1999

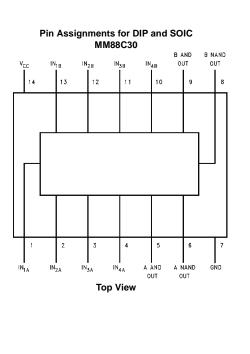
MM88C29 • MM88C30 Quad Single-Ended Line Driver • Dual Differential Line Driver

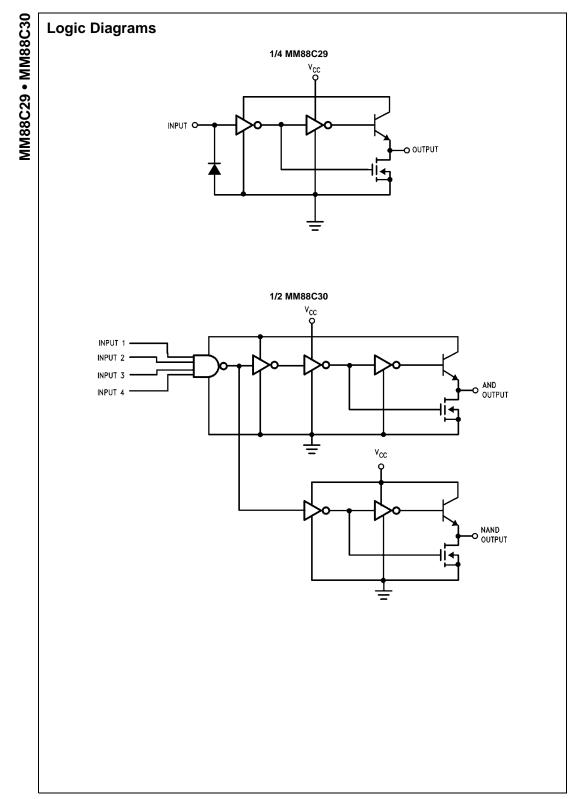
General Description

The MM88C30 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function. The absence of a clamp diode to $V_{\rm CC}$ in the input protection circuitry of the MM88C30 allows a CMOS user to interface systems operating at different voltage levels. Thus, a CMOS digital signal source can operate at a $V_{\rm CC}$ voltage greater than the $V_{\rm CC}$ voltage of the MM88C30 line driver. The differential output of the MM88C30 eliminates ground-loop errors.

The MM88C29 is a non-inverting single-wire transmission line driver. Since the output ON resistance is a low 20Ω typ., the device can be used to drive lamps, relays, solenoids, and clock lines, besides driving data lines.


Features


- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.45 V_{CC} (typ.)
- Low output ON resistance: 20Ω (typ.)


Ordering Code:

Order Number	Package Number	Package Description
MM88C29N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM88C30M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM88C30N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available	in Tape and Reel. Specify	by appending suffix letter "X" to the ordering code.

Connection Diagrams

Absolute Maximum Ratings(Note 1)

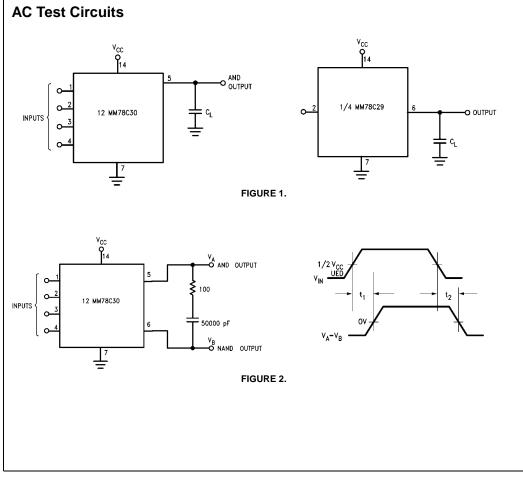
Voltage at Any Pin (Note 2)	-0.3V to V _{CC} +16V
Operating Temperature Range	-40°C to +85°C
Storage Temperature	-65°C to +150°C
Power Dissipation (P _D) Dual-In-Line	700
Small Outline	700 mW 500 mW
	3V to 15V
Operating V _{CC} Range	37 10 157 18V
Absolute Maximum V _{CC}	IOV

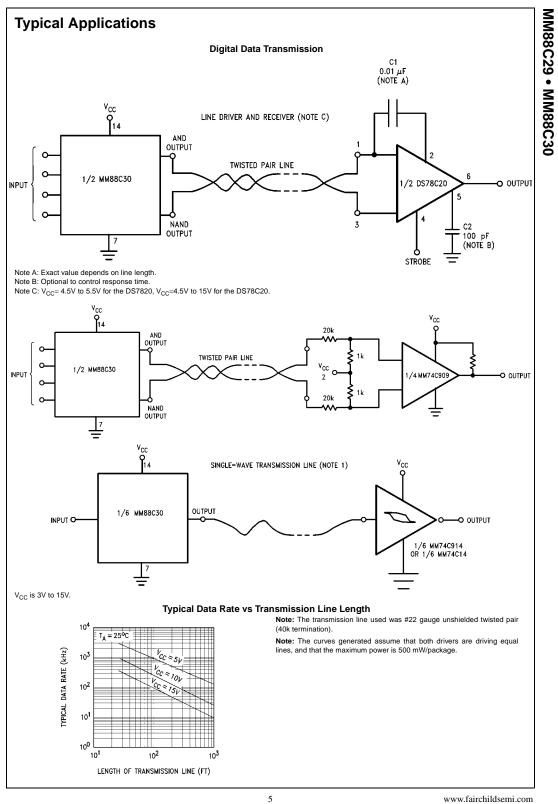
Average Current at Output		
MM88C30	50 mA	
MM88C29	25 mA	(
Maximum Junction Temperature, Tj	150°C	
Lead Temperature		
(Soldering, 10 seconds)	260°C	

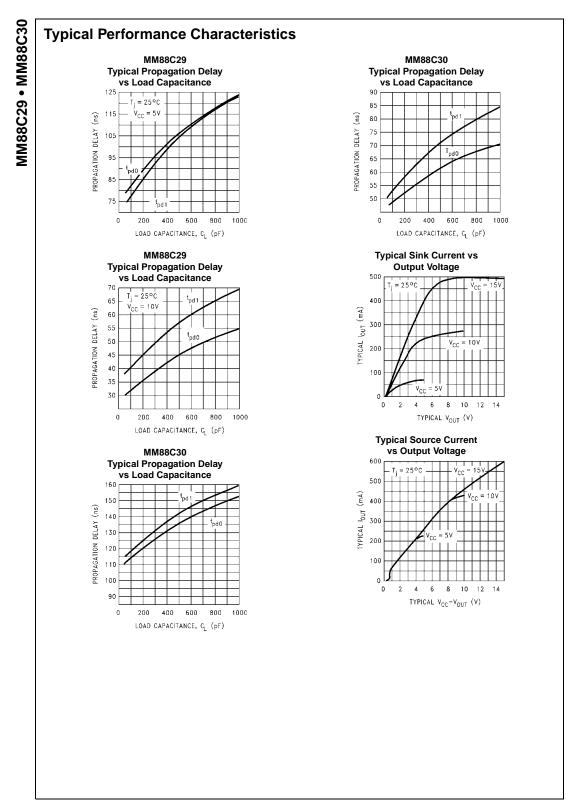
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

Note 2: AC Parameters are guaranteed by DC correlated testing.

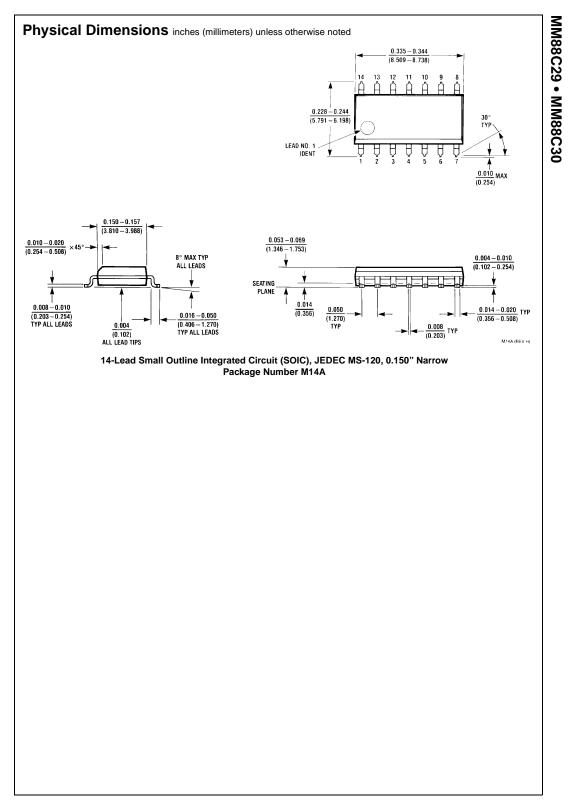
DC Electrical Characteristics

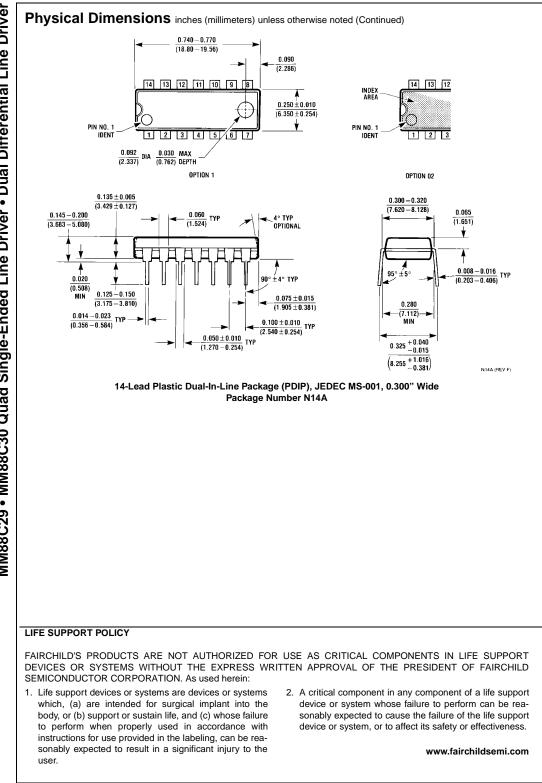

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS			1		
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
.,		$V_{CC} = 10V$	8			V
VIN(0)	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
.,		$V_{CC} = 10V$			2	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1	μA
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1	-0.005		μA
Icc	Supply Current	$V_{CC} = 5V$		0.05	100	mA
OUTPUT	RIVE					
ISOURCE	Output Source Current	$V_{OUT} = V_{CC} - 1.6V,$				
		$V_{CC} \ge 4.75 V$, $T_i = 25^{\circ}C$	-47	-80		mA
		T _i = 85°C	-32	-60		mA
	MM88C29	$V_{OUT} = V_{CC} - 0.8V$	-2	-20		mA
	MM88C30	$V_{CC} \ge 4.5V$				
I _{SINK}	Output Sink Current	V _{OUT} = 0.4V, V _{CC} = 4.75V,				
		$T_i = 25^{\circ}C$	9.5	22		mA
		T _i = 85°C	8	18		mA
		$V_{OUT} = 0.4V, V_{CC} = 10V,$				
		$T_i = 25^{\circ}C$	19	40		mA
		$T_i = 125^{\circ}C$	15.5	33		mA
ISOURCE	Output Source Resistance	$V_{OUT} = V_{CC} - 1.6V,$				
		$V_{CC} \ge 4.75V$, $T_i = 25^{\circ}C$		20	34	Ω
		T _i = 85°C		27	50	Ω
I _{SINK}	Output Sink Resistance	V _{OUT} = 0.4V, V _{CC} = 4.75V,				
Chini		$T_i = 25^{\circ}C$		18	41	Ω
		T _i = 85°C		22	50	Ω
		$V_{OUT} = 0.4V, V_{CC} = 10V,$				
		$T_i = 25^{\circ}C$		10	21	Ω
		T _i = 85°C		12	26	Ω
	Output Resistance					
	Temperature Coefficient					
	Source			0.55		%/°C
	Sink			0.40		%/°C
θ _{JA}	Thermal Resistance			150		°C/V
	(N-Package)					


MM88C29 • MM88C30


Symbol	Parameter	Conditions	Min	Тур	Max	Uni
t _{pd}	Propagation Delay Time to					
	Logical "1" or "0"	(See Figure 1)				
	MM88C29	$V_{CC} = 5V$		80	200	ns
		$V_{CC} = 10V$		35	100	ns
	MM88C30	$V_{CC} = 5V$		110	350	ns
		$V_{CC} = 10V$		50	150	ns
pu	Differential Propagation Delay	$R_L = 100\Omega, C_L = 5000 \text{ pF}$				
	Time to Logical "1" or "0"	(See Figure 2)				
	MM88C30	$V_{CC} = 5V$			400	ns
		$V_{CC} = 10V$			150	ns
C _{IN}	Input Capacitance					
	MM88C29	(Note 3)		5.0		pF
	MM88C30	(Note 3)		5.0		pF
C _{PD}	Power Dissipation Capacitance					
	MM88C29	(Note 3)		150		pF
	MM88C30	(Note 3)		200		pF

Note 3: Capacitance is guaranteed by periodic testing.


Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note AN-90 (CMOS Logic Databook).



6

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.