Discrete POWER & Signal **Technologies**

MPSA29

AIRCHILD SEMICONDUCTOR TM

MPSA29

NPN Darlington Transistor

This device is designed for applications requiring extremely high current gain at collector currents to 500 mA. Sourced from Process 03. See MPSA28 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CES}	Collector-Emitter Voltage	100	V
V _{CBO}	Collector-Base Voltage	100	V
V_{EBO}	Emitter-Base Voltage	12	V
I _C	Collector Current - Continuous	800	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Thermal Characteristics TA = 25°C unless otherwise noted					
Symbol	Characteristic	Max	Units		
		MPSA29			
P _D	Total Device Dissipation	625	mW		
	Derate above 25°C	5.0	mW/°C		
$R_{\theta_{JC}}$	Thermal Resistance, Junction to Case	83.3	°C/W		
$R_{ ext{ hetaJA}}$	Thermal Resistance, Junction to Ambient	200	°C/W		

© 1997 Fairchild Semiconductor Corporation

NPN Darli

arling	ton Tra	nsistor (continued)	
Min	Max	Units	

Symbol Parameter **Test Conditions**

Electrical Characteristics

OFF CHA	RACTERISTICS				
V _{(BR)CES}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm B} = 0$	100		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, I_{E} = 0$	100		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu {\rm A}, \ I_{\rm C} = 0$	12		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 80 \text{ V}, I_E = 0$		100	nA
I _{CES}	Collector Cutoff Current	$V_{CE} = 80 \text{ V}, I_{E} = 0$		500	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 10 \text{ V}, I_{C} = 0$		100	nA

TA = 25°C unless otherwise noted

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA}$	10,000 10.000		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{C} = 10 \text{ mA}, I_{B} = 0.01 \text{ mA}$ $I_{C} = 100 \text{ mA}, I_{B} = 0.1 \text{ mA}$		1.2 1.5	V V
V _{BE(on)}	Base-Emitter On Voltage	I_{C} = 100 mA, V_{CE} = 5.0 V		2.0	V

SMALL SIGNAL CHARACTERISTICS

f⊤	Current Gain - Bandwidth Product	$I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 100 MHz	125		MHz
Cobo	Output Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$		8.0	pF

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%