FAIRCHILD

SEMICONDUCTOR

NC7S00 TinyLogic[™] HS 2-Input NAND Gate

General Description

The NC7S00 is a single 2-Input high performance CMOS NAND Gate. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation over a broad V_{CC} range. ESD protection diodes inherently guard both inputs and output with respect to the V_{CC} and GND rails. Three stages of gain between inputs and output assures high noise immunity and reduced sensitivity to input edge rate.

October 1995 Revised June 2000

NC7S00 TinyLogic[™] HS 2-Input NAND Gate

Ordering Code:

Order Number	Package	Product Code	Deckene Decerintian	Sumplied As
Order Number	Number	Top Mark	Package Description	Supplied As
NC7S00M5	MA05B	7S00	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel
NC7S00M5X	MA05B	7S00	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7S00P5	MAA05A	S00	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel
NC7S00P5X	MAA05A	S00	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel

Features

■ High speed: t_{PD} 3.5 ns typ

 \blacksquare Low Quiescent Power: I_CC < 1 μA

Broad V_{CC} Operating Range: 2V–6V

Balanced Propagation Delays

Specified for 3V operation

■ Space saving SOT23 or SC70 5-lead package

■ Balanced Output Drive: 2 mA I_{OL}, -2 mA I_{OH}

Logic Symbol **Connection Diagram** IEEE/IEC 5 V_{CC} A 1 & P GND 3 4 (Top View) **Pin Descriptions Function Table** $\mathbf{Y} = \overline{\mathbf{AB}}$ Pin Names Description A, B Inputs Output Input Output в Y Α L L Н L Н Н н н L н н L H = HIGH Logic Level L = LOW Logic Level TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

© 2000 Fairchild Semiconductor Corporation DS012138

NC7S00

Supply Voltage (V_{CC})

Absolute Maximum Ratings(Note 1)

S(Note 1) Recommended Operating -0.5V to +7.0V Conditions (Note 2)

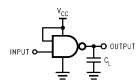
DC Input Diode Current (I _{IK})	
$@V_{IN} \leq -0.5V$	–20 mA
$@V_{IN} \ge V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _{IN})	–0.5V to $V_{CC}{+}0.5V$
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–20 mA
$@V_{OUT} > V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _{OUT})	–0.5V to $V_{CC}\text{+}~0.5\text{V}$
DC Output Source	
or Sink Current (I _{OUT})	±12.5 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±25 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature (T _J)	150°C
Lead Temperature (T _L);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23-5	200 mW
SC70-5	150 mW

· · · · ·	
Supply Voltage (V _{CC})	2.0V-6.0V
Input Voltage (V _{IN})	0V-V _{CC}
Output Voltage (V _{OUT})	0V-V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
V _{CC} @ 2.0V	0–1000 ns
V _{CC} @ 3.0V	0–750 ns
V _{CC} @ 4.5V	0–500 ns
V _{CC} @ 6.0V	0–400 ns
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside the databook specifications. Note 2: Unused inputs must be held HIGH or LOW. They may not float.

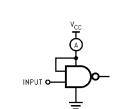
DC Electrical Characteristics

Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^\circ C$ to $+85^\circ C$		Units	Conditions	
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions
VIH	HIGH Level Input Voltage	2.0	1.50			1.50		V	
		3.0 - 6.0	0.7V _{CC}			0.7V _{CC}		v	
V _{IL}	LOW Level Input Voltage	2.0			0.50		0.50	V	
		3.0 - 6.0			0.3V _{CC}		0.3V _{CC}	v	
V _{он}	HIGH Level Output Voltage	2.0	1.90	2.0		1.90			
		3.0	2.90	3.0		2.90		V	$I_{OH} = -20 \ \mu A$
		4.5	4.40	4.5		4.40		v	$V_{IN} = V_{IL}$
		6.0	5.90	6.0		5.90			
									V _{IN} = V _{IL}
		3.0	2.68	2.85		2.63		V	$I_{OH} = -1.3 \text{ mA}$
		4.5	4.18	4.35		4.13		v	$I_{OH} = -2 \text{ mA}$
		6.0	5.68	5.85		5.63			$I_{OH} = -2.6 \text{ mA}$
V _{OL}	LOW Level Output Voltage	2.0		0.0	0.10		0.10		
		3.0		0.0	0.10		0.10	V	$I_{OL} = 20 \ \mu A$
		4.5		0.0	0.10		0.10	v	$V_{IN} = V_{IH}$
		6.0		0.0	0.10		0.10		
									$V_{IN} = V_{IH}$
		3.0		0.1	0.26		0.33	V	$I_{OL} = 1.3 \text{ mA}$
		4.5		0.1	0.26		0.33	v	$I_{OL} = 2 \text{ mA}$
		6.0		0.1	0.26		0.33		$I_{OL} = 2.6 \text{ mA}$
I _{IN}	Input Leakage Current	6.0			±0.1		±1.0	μA	$V_{IN} = V_{CC}$, GND
I _{CC}	Quiescent Supply Current	6.0			1.0		10.0	μΑ	V _{IN} = V _{CC} , GND

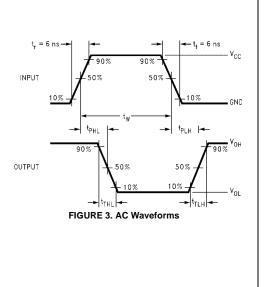

AC Electrical Characteristics

NC7S00

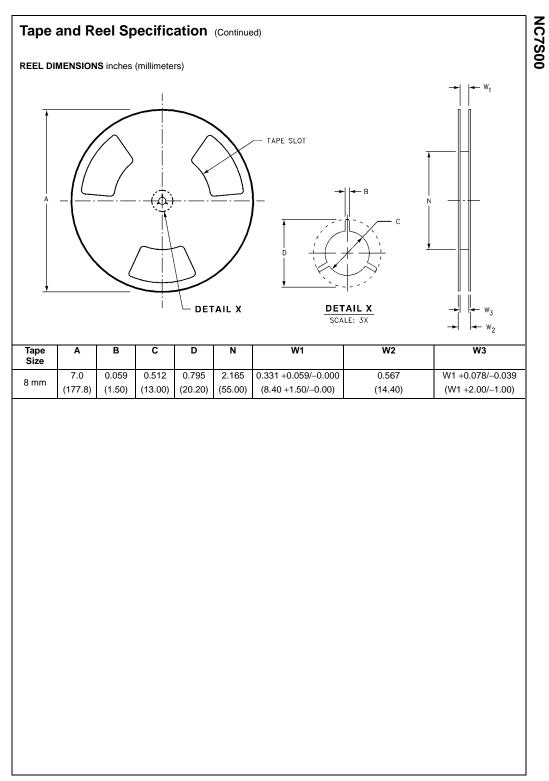
Symbol	Parameter	Vcc		$T_A = +25^{\circ}C$		$T_A = -40^\circ$	C to +85°C	Units	Conditions	Fig. No.
Gymbol	i alametei	(V)	Min	Тур	Max	Min	Max	onita	Conditions	1 lg. No.
t _{PLH} ,	Propagation Delay	5.0		3.5	15			ns	C _L = 15 pF	
t _{PHL}		2.0		19	100		125			1
		3.0		10.5	27		35		C = 50 pE	Figures 1, 3
		4.5		7.5	20		25	ns	$C_L = 50 \text{ pF}$., 0
		6.0		6.5	17		21			
t _{TLH} ,	Output Transition Time	5.0		3.0	10			ns	$C_L = 15 \text{ pF}$	
t _{THL}		2.0		25	125		155			1_
		3.0		16	35		45		C 50 - F	Figures 1, 3
		4.5		11	25		31	ns	C _L = 50 pF	1, 0
		6.0		9	21		26			
CIN	Input Capacitance	Open		2	10		10	pF		
C _{PD}	Power Dissipation Capacitance	5.0		6				pF	(Note 3)	Figure 2

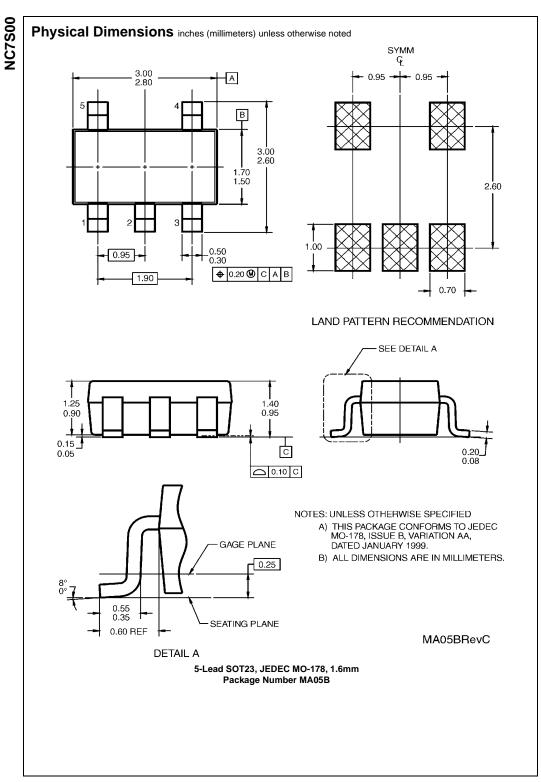

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) ($f_{|N}$) + (I_{CC}static).

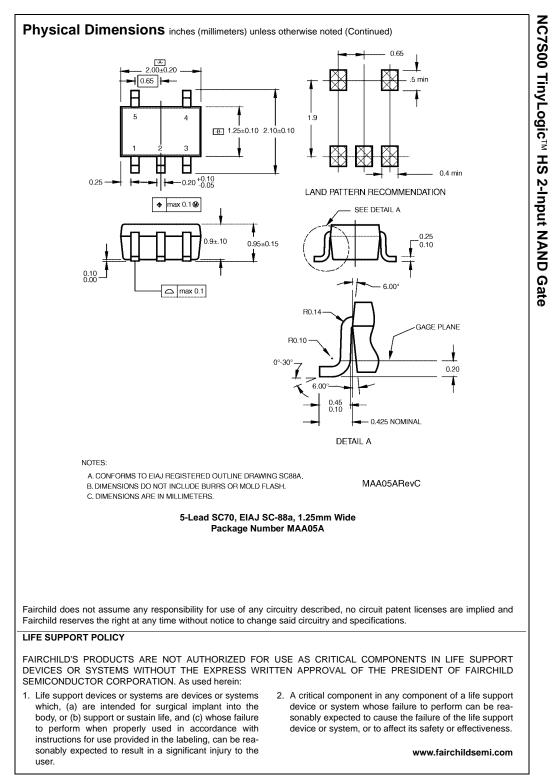
AC Loading and Waveforms



 C_L includes load and stray capacitance Input PRR = 1.0 MHz, $t_w = 500$ ns


FIGURE 1. AC Test Circuit




Input = AC Waveform; PRR = variable; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit

Package Designato		Tape		Number	Cavit	v	Cover Tap
		Section		Cavities	Statu		Status
		(Start End)		125 (typ)	Empt		Sealed
M5, P5	Carrier			250	Filled		Sealed
inic, i c		Hub End)		75 (typ)	Empt		Sealed
		(Start End)		125 (typ)	Empt		Sealed
M5X, P5X		(otart End)		3000	Filled		Sealed
1000, 1 00		Hub End)		75 (typ)	Empt		Sealed
	SIONS inches (r	nillimeters)					
	Ø 0.061±0.0 [1.55±0	02 TYP. .05]					
	B - [79±0.002 TYP	0.157	v	.069	Ko → 0.008 [0.2] →	► ► ► ←
+		i	i	i		[0.2]	
			()	\bigcirc			4
1					$\overline{)}$	3° MAX. TYP.	
	L	· · ·		ŕ	F A TAN	GENT - 1	
_ït⊊		$\neg \subset \uparrow$				NTS	
	+ - + + + + + + + + + + + + + + +	┝──┝─└──)—			્ર ૬ –	
	\rightarrow \rightarrow	\rightarrow \frown $+$			4	_	(and)
+ 2		i			<u> </u>		
	8 🛶 🖵	i -	— P1 TYP —				
@ TANGENT	A TYP POINTS CAVIT		DIRECTION (OF FEED		SEC	TION B-B
@ TANGENT	POINTS CAVIT				<u>₹</u> .		
@ TANGENT							. 181 MIN. [30]
@ TANGENT					<u>,</u>	RI	.181 MIN. [30] OT TO SCAL
© TANGENT I 3° 2°	POINTS CAVIT MAX TYP Q Tape Size	SECTION	A-A DIM B 0.096	DIM F 0.138 ±0.004	DIM K _o 0.053 ±0.004	END RADIUS NO 0.157	. 181 MIN. [30] OT TO SCAL DIM 1 0.315 ±0
	POINTS CAVIT	SECTION DIM A 0.093 (2.35)	A-A DIM B 0.096 (2.45)	DIM F 0.138 ±0.004 (3.5 ±0.10)	DIM K_o 0.053 ±0.004 (1.35 ±0.10)	END RADIUS NO 0.157 (4)	. 181 MIN. [30] OT TO SCAL 0.315 ±0 (8 ±0.
© TANGENT I 3° 2°	POINTS CAVIT MAX TYP Q Tape Size	SECTION	A-A DIM B 0.096	DIM F 0.138 ±0.004	DIM K _o 0.053 ±0.004	END RADIUS NO 0.157	. 181 MIN. [30] OT TO SCAL DIM 1 0.315 ±0

