

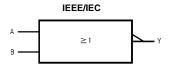
February 1997 Revised June 2000

NC7ST02

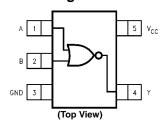
TinyLogic™ HST 2-Input NOR Gate

General Description

The NC7ST02 is a single 2-Input high performance CMOS NOR Gate, with TTL-compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both inputs and output with respect to the $V_{\rm CC}$ and GND rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL-compatible inputs facilitate TTL to NMOS/CMOS interfacing. Device performance is similar to MM74HCT but with $\frac{1}{12}$ the output current drive of HC/HCT.


Features

- Space saving SOT23 or SC70 5-lead package
- High Speed; t_{PD} <7 ns typ, V_{CC} = 5V, C_L = 15 pF
- \blacksquare Low Quiescent Power; I_CC <1 μA typ, V_{CC} = 5.5V
- \blacksquare Balanced Output Drive; 2 mA I $_{\rm OL}$, –2 mA I $_{\rm OH}$
- TTL-compatible inputs


Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7ST02M5	MA05B	8S02	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel
NC7ST02M5X	MA05B	8S02	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7ST02P5	MAA05A	T02	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel
NC7ST02P5X	MAA05A	T02	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
A, B	Inputs
Υ	Output

Function Table

$Y = \overline{A + B}$								
Inputs Output								
Α	В	Υ						
L	L	Н						
L	Н	L						
Н	L	L						
Н	Н	L						

H = HIGH Logic Level L = LOW Logic Level

 $\label{eq:time_cond} \mbox{TinyLogic}^{\mbox{\tiny TM}} \mbox{ is a trademark of Fairchild Semiconductor Corporation}.$

Absolute Maximum Ratings(Note 1) **Recommended Operating** Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK}) $V_{IN} < -0.5V$ -20 mA

 $V_{IN} \geq V_{CC} + 0.5 V$ +20 mA DC Input Voltage (V_{IN}) -0.5V to V_{CC} +0.5V

DC Output Diode Current (I_{OK})

-20 mA $V_{OUT}\,{<}\,{-}0.5V$ $V_{OUT} > V_{CC} + 0.5 V$ +20 mA

Output Voltage (V_{OUT}) -0.5V to V_{CC} +0.5V

DC Output Source or Sink

Current (I_{OUT}) ±12.5 mA

DC V_{CC} or Ground Current per

Supply Pin (I_{CC} or I_{GND}) $\pm 25~\text{mA}$ Storage Temperature (T_{STG}) -65°C to +150°C

Junction Temperature (T_{.1}) 150°C

Lead Temperature (T_L);

(Soldering, 10 seconds) 260°C

Power Dissipation (P_D) @+85°C

SOT23-5 200 mW SC70-5 150 mW

Conditions (Note 2)

Supply Voltage 4.5V-5.5V Input Voltage (V_I) $0V-V_{CC}$ 0V-V_{CC} Output Voltage (V_O) Operating Temperature (T_A) -40°C to +85°C

Input Rise and Fall Time (t_r,t_f)

 $V_{CC}=5.0V\,$ 0-500 ns

Thermal Resistance (θ_{JA})

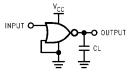
300°C/W SOT23-5

SC70-5 425°C/W

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside the databook specifica-

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


Parameter	V _{CC} T _A =		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Unito	Conditions	
Farameter	(V)	Min Typ		Max	Min Max		Units	Conditions	
HIGH Level Input Voltage	4.5–5.5	2.0			2.0		V		
LOW Level Input Voltage	4.5–5.5			8.0		0.8	V		
HIGH Level Output Voltage	4.5	4.4	4.5		4.4			$I_{OH} = -20 \mu A$	
	4.5	4.18	4.35		4.13		V	$V_{IN} = V_{IL}$	
								$I_{OH} = -2 \text{ mA}$	
LOW Level Output Voltage	4.5		0	0.1		0.1		$I_{OL} = 20 \mu A$	
	4.5		0.10	0.26		0.33	V	$V_{IN} = V_{IH}$	
								I _{OL} = 2 mA	
Input Leakage Current	5.5			±0.1		±1.0	μΑ	$0 \le V_{IN} \le 5.5V$	
Quiescent Supply Current	5.5			1.0		10.0	μΑ	V _{IN} = V _{CC} or GND	
I _{CC} per Input	5.5			2.0		2.9	mA	One Input $V_{IN} = 0.5V$ or 2.4V,	
								Other Input V _{CC} or GND	
	LOW Level Input Voltage HIGH Level Output Voltage LOW Level Output Voltage Input Leakage Current Quiescent Supply Current	Name Name	Name	Parameter	Parameter (V) Min Typ Max HIGH Level Input Voltage 4.5–5.5 2.0 0.8 LOW Level Input Voltage 4.5–5.5 0.8 HIGH Level Output Voltage 4.5 4.4 4.5 4.5 4.18 4.35 0.0 0.1 LOW Level Output Voltage 4.5 0.10 0.26 Input Leakage Current 5.5 ±0.1 Quiescent Supply Current 5.5 1.0	Parameter (V) Min Typ Max Min HIGH Level Input Voltage 4.5–5.5 2.0 2.0 LOW Level Input Voltage 4.5–5.5 0.8 HIGH Level Output Voltage 4.5 4.4 4.5 4.4 4.5 4.18 4.35 4.13 4.13 LOW Level Output Voltage 4.5 0 0.1 0.26 Input Leakage Current 5.5 ±0.1 4.0<	Parameter (V) Min Typ Max Min Max HIGH Level Input Voltage 4.5-5.5 2.0 2.0 LOW Level Input Voltage 4.5-5.5 0.8 0.8 HIGH Level Output Voltage 4.5 4.4 4.5 4.4 4.5 4.18 4.35 4.13 4.13 LOW Level Output Voltage 4.5 0 0.1 0.1 4.5 0.10 0.26 0.33 Input Leakage Current 5.5 ±0.1 ±1.0 Quiescent Supply Current 5.5 1.0 10.0	Parameter (V) Min Typ Max Min Max Units HIGH Level Input Voltage 4.5–5.5 2.0 2.0 V LOW Level Input Voltage 4.5–5.5 0.8 0.8 V HIGH Level Output Voltage 4.5 4.4 4.5 4.4 4.13 V LOW Level Output Voltage 4.5 0.1 0.1 0.1 0.1 0.33 V LOW Level Output Voltage 4.5 0.10 0.26 0.33 V Input Leakage Current 5.5 ±0.1 ±1.0 μA Quiescent Supply Current 5.5 1.0 10.0 μA	

AC Electrical Characteristics

Symbol	Parameter	Vcc	T _A = +25°C		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Fig. No.	
		(V)	Min	Тур	Max	Min	Max	Oiiita	Conditions	1 ig. ivo.
t _{PLH} ,	Propagation Delay	5.0		3.5	12			ns	C _L = 15 pF	Figures 1, 3
t_{PHL}		3.0		6.3	17					
		4.5		6.1	16		20	ns	C _L = 50 pF	
		4.5		11.7	27		31			
		5.5		4.2	14		18			
		3.3		11.4	26		30			
t _{TLH} ,	Output Transition Time	5.0		4	10			ns	C _L = 15 pF	_
t_{THL}		4.5		11	25		31	ns	C _L = 50 pF	Figures 1, 3
		5.5		10	21		26			
C _{IN}	Input Capacitance	Open		2	10			pF		
C _{PD}	Power Dissipation Capacitance	5.0		6				pF	(Note 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression:
I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CCStatic}).

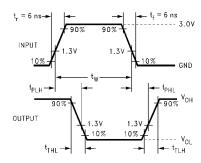
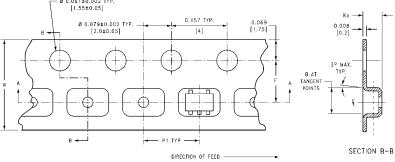
AC Loading and Waveforms

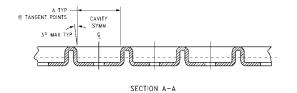
 ${
m C_L}$ includes load and stray capacitance Input PRR = 1.0 MHz, ${
m t_W}$ = 500 ns

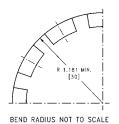
FIGURE 1. AC Test Circuit

 $Input = AC \ Waveform; \ PRR = Variable; \ Duty \ Cycle = 50\%$

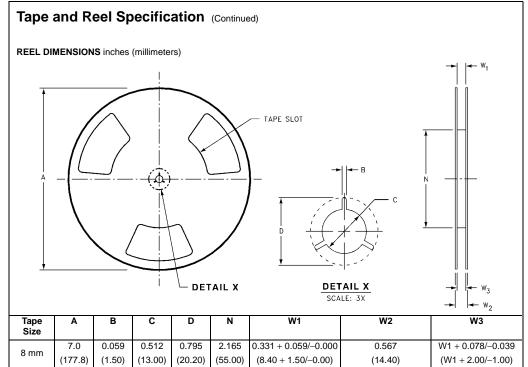
FIGURE 2. $I_{\rm CCD}$ Test Circuit

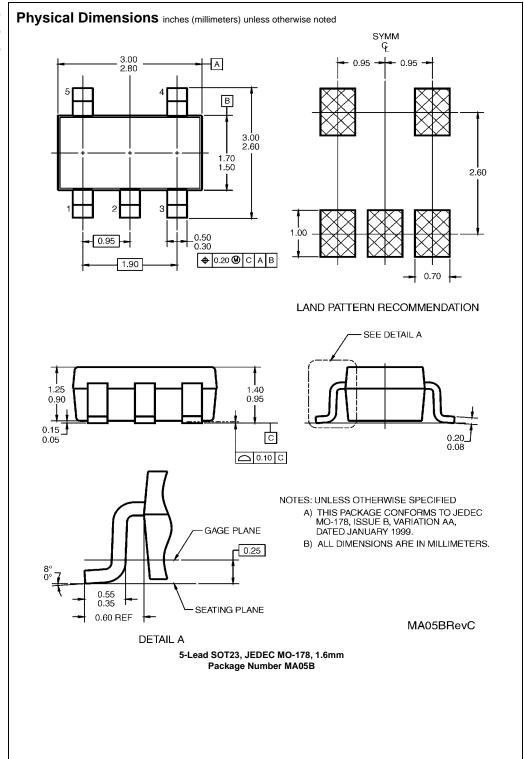




FIGURE 3. AC Waveforms


Tape and Reel Specification TAPE FORMAT Number Cavity Package Tape Cover Tape Designator Section Cavities Status Status Leader (Start End) 125 (typ) Empty Sealed M5, P5 Carrier 250 Filled Sealed Trailer (Hub End) 75 (typ) Empty Sealed Leader (Start End) 125 (typ) Empty Sealed M5X, P5X Carrier 3000 Filled Sealed Trailer (Hub End) 75 (typ) Empty Sealed

- Ø 0.061±0.002 TYP. [1.55±0.05]


TAPE DIMENSIONS inches (millimeters)



Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
		(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
		(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)

www.fairchildsemi.com

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) -A-2.00±0.20 0.65 1.9 4 -B- 1.25±0.10 2.10±0.10 -0.20 ^{+0.10} -0.05 0.25 LAND PATTERN RECOMMENDATION SEE DETAIL A 0.9±.10 0.95±0.15 6.00° △ max 0.1 R0.14 GAGE PLANE R0.10 0°-30° 0.20 6.00 0.45 0.425 NOMINAL DETAIL A

NOTES:

- A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88A.
- B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH.

C. DIMENSIONS ARE IN MILLIMETERS.

MAA05ARevC

5-Lead SC70, EIAJ SC-88a, 1.25mm Wide Package Number MAA05A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

7

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com