

TN6725A

NPN Darlington Transistor

FAIRCHILD

SEMICONDUCTOR IM

This device is designed for applications requiring extremely high current gain at collector currents to 1A. Sourced from Process 05. See MPSA14 for characteristics.

Absolute Maximum Ratings*	$T_{A = 25^{\circ}C}$ unless otherwise noted
---------------------------	--

Symbol	Parameter	Value	Units
V _{CES}	Collector-Emitter Voltage	50	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	12	V
Ic	Collector Current - Continuous	1.2	А
T _{J, ⊤stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150°C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Symbol	Characteristic	Max	Units	
		TN6725A		
P _D	Total Device Dissipation Derate above 25°C	1 8	W mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	50	°C/W	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	125	°C/W	

Thermal Characteristics T_{A = 25°C unless otherwise not}

© 1997 Fairchild Semiconductor Corporation

NPN Darlington Transistor (continued)						
Electric	al Characteristics T _{A = 25°C unless}	otherwise noted				
Symbol	Parameter	Test Conditions	Min	Max	Units	
OFF CHAI	RACTERISTICS		I			
BV _{CES}	Collector-Emitter Breakdown Voltage	I _C = 1 mA	50		V	
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = 100 μA	60		V	
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = 10 μA	12		V	
I _{CBO}	Collector Cutoff Current	V _{CB} = 40 V		100	nA	
I _{EBO}	Emitter Cutoff Current	V _{EB} = 10 V		100	nA	
ON CHAF	RACTERISTICS*				-	
hee	DC Current Gain	Ic = 200 mA. VcF = 5 V	25,000		-	

h _{FE}	DC Current Gain	$I_{C} = 200 \text{ mA}, V_{CE} = 5 \text{ V}$	25,000		-
		$I_{C} = 500 \text{ mA}, V_{CE} = 5 \text{ V}$	15,000	40.000	
		$I_C = 1A, V_{CE} = 5 V$	4000	40,000	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 200 \text{ mA}, I_{\rm B} = 2 \text{ mA}$		1.0	V
		I _C = 1 A, I _B = 2 mA		1.5	
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 1 A, I _B = 2 mA		2	V
V _{BE(on)}	Base-Emitter On Voltage	$I_{C} = 1 \text{ A}, V_{CE} = 5.0 \text{ V}$		2	V

SMALL SIGNAL CHARACTERISTICS

C _{cb}	Output Capacitance	V _{CB} = 10 V, I _E = 0, f = 1MHz		10	pF
h _{fe}	Small Signal Current Gain	$I_{C} = 200 \text{ mA}, V_{CE} = 5 \text{ V}, \text{ f}=100 \text{MHz}$	1	10	-

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 1.0%

TN6725A