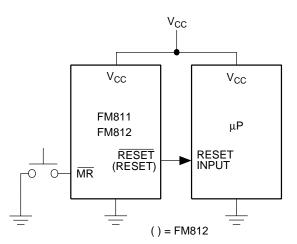


FM811/812 Microprocessor Reset Circuits

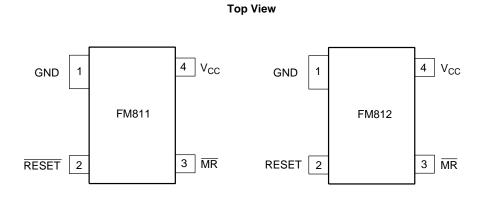
Features

- Feature
- Precision Voltage Monitor for 3V, 3.3V or 5V Power Supplies
- 6µA Supply Current
- 140ms Minimum Reset Pulse Width
- + $$\overline{\text{RESET}}$$ Remains Valid with $V_{CC}$$ as Low as 1.4V
- Active Low Manual Reset Input
- No External Components
- 4-Pin SOT-143 Package

Applications

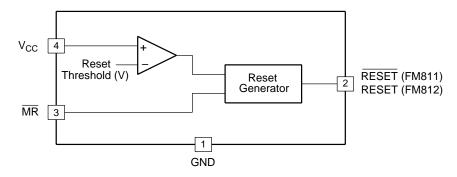

- Critical Microprocessor Power Monitoring
- Portable Equipment
- Intelligent Instruments
- Computers & Printers
- Controllers

Typical Applications


Description

The FM811/FM812 is a low cost microprocessor supervisory circuit that asserts a reset if the power supply drops below a designated threshold or the manual reset pin is forced low. Several different reset thresholds are available to accommodate systems operating at 3V, 3.3V or 5V.

The FM811 has an active low RESET output, while the FM812 offers an active high RESET output. The reset output is guaranteed to remain asserted for a minimum of 140ms after V_{CC} has risen above the designated reset threshold. The FM811/FM812 is available in a 4-pin SOT-143.


Pin Assignments

Pin Definitions

	Pin Number			
Pin Name	FM811	FM812	Description	
GND	1	1	Ground Pin	
RESET	2	N/A	RESET goes low if V _{CC} falls below the reset threshold and remains asserted for one reset time-out period (140ms min.) after V _{CC} exceeds the reset threshold.	
RESET	N/A	2	RESET goes high if V_{CC} falls below the reset threshold and remains asserted for one reset time-out period (140ms min.) after V_{CC} exceeds the reset threshold.	
MR	3	3	Manual reset input. Shorting this pin to GND forces a reset. The reset will remain asserted as long as $\overline{\text{MR}}$ is held low and for one reset time-out period (140ms min.) after $\overline{\text{MR}}$ goes high. This input cannot be driven by a CMOS or TTL logic. Push-button switch is recommended to be used with this pin. Float if unused.	
V _{CC}	4	4	Power supply input, 3V, 3.3V, or 5V	

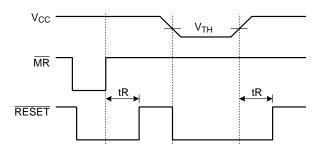
Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Units	
Terminal Voltage	V _{CC}	-0.3 to 6.0	V	
	MR	-0.3 to (V _{CC} + 0.3)	V	
Input Current	V _{CC} , MR	20	mA	
Output Current	RESET, RESET	20	mA	
Rate of Rise	V _{CC}	100	V/µs	
Operating Temperature Range	T _A	-40 to +85	°C	
Storage Temperature Range		-65 to +150	°C	
Lead Temperature Range		300	°C	
Power Dissipation ($T_A = +70^{\circ}C$)		320	mW	

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. Operating ranges define those limits between which the functionality of the device is guaranteed.

Electrical Characteristics


 V_{CC} = 5V for FM81_L/M/J, V_{CC} = 3.3V for FM81_S/T, V_{CC} = 3V for FM81_R, T_A = Operating Temperature Range, unless otherwise noted.

Parameter	Conditions	Min.	Тур.	Max.	Units
Operating Voltage Range	$T_A = 0^{\circ}C$ to $70^{\circ}C$	1.4		5.5	V
	$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.6		5.5	
Supply Current, I _{CC}	FM811L/M/J, FM812L/M/J		9	15	μA
	V _{CC} < 3.6V, FM811R/S/T, FM812R/S/T		6	10	
Reset Voltage Threshold,	FM811L, FM812L	4.40	4.63	4.86	V
V _{TH}	FM811M, FM812M	4.18	4.38	4.52	
	FM811J, FM812J	3.90	4.00	4.18	
	FM811T, FM812T	2.97	3.08	3.19	
	FM811S, FM812S	2.79	2.93	3.00	
	FM811R, FM812R	2.49	2.63	2.70	
Reset Time-out Period, t _R		140	240	560	ms
RESET Output Voltage, V _{OH}	I _{SOURCE} = 800μA, FM811L/M/J	V _{CC} - 1.5			V
	I _{SOURCE} = 500μA, FM811R/S/T	0.8 x V _{CC}			
RESET Output Voltage, V _{OL}	V _{CC} = V _{TH} Min., I _{SINK} = 3.2mA, FM811L/M/J			0.4	V
	V_{CC} = V_{TH} Min., I_{SINK} = 1.2mA, FM811R/S/T			0.3	
	$V_{CC} > 1.4V$, $I_{SINK} = 50\mu A$, $T_A = 0^{\circ}C$ to $70^{\circ}C$			0.3	
	V _{CC} > 1.6V, I _{SINK} = 50μA, T _A = -40°C to 85°C			0.3	
RESET Output Voltage, V _{OH}	1.8V < V _{CC} < V _{TH} Min., I _{SOURCE} = 150µA	0.8 x V _{CC}			V
RESET Output Voltage, V _{OL}	I _{SINK} = 3.2mA, FM810L/M/J			0.4	V
	I _{SINK} = 1.2mA, FM810R/S/T			0.35	
MR Minimum Pulse Width		10			μs
MR to Reset Delay			0.5		μs
MR Input Threshold, V _{IH}	V _{CC} > V _{TH} Max., FM81_L/M/J	2.3			V
	FM81_R/S/T	0.7 x V _{CC}			
MR Input Threshold, V _{IL}	V _{CC} > V _{TH} Max., FM81_L/M/J FM81_R/S/T			0.8 0.25xV _{CC}	
MR Pull-Up Resistance		10	20	30	kΩ
MR Glitch Immunity			100		ns

Circuit Description

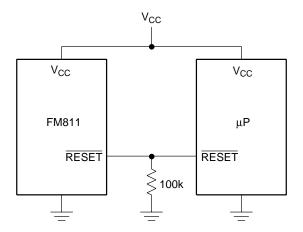
Microprocessor Reset

The $\overline{\text{RESET}}$ pin is asserted whenever V_{CC} falls below the reset threshold voltage or if $\overline{\text{MR}}$ (manual reset) is forced low. The reset pin remains asserted for a period of 40ms after V_{CC} has risen above the reset threshold voltage or $\overline{\text{MR}}$ has returned high. The reset function ensures the microprocessor is properly reset and powers up into a known condition after a power failure. $\overline{\text{RESET}}$ will remain valid with V_{CC} as low as 1.4V.

V_{CC} Transients

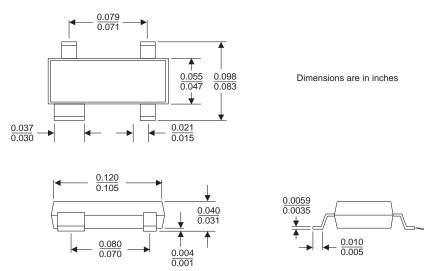
The FM811/FM812 are relatively immune to negative-going V_{CC} glitches below the reset threshold. Typically, a negativegoing transient 125mV below the reset threshold with a duration of 50ms (25ms for FM81_R/S/T) or less will not cause an unwanted reset.

Manual Reset Function

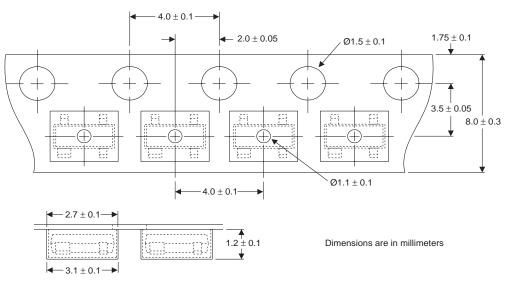

Momentarily connecting the Manual Reset input pin (\overline{MR}) to GND forces a reset. Typically a Push-button switch is used in most of the applications to force a manual reset. See Typical Applications diagram. The reset will remain asserted as long as \overline{MR} is held low and for one reset time-out period (140ms min.) after \overline{MR} goes high. Note that this input cannot be driven by a CMOS or TTL logic. This pin should be left floating if manual reset feature is unused.

Interfacing to Bidirectional Reset Pins

The FM811/ FM812 can interface with μ Ps with bidirectional reset pins by connecting a 4.7k Ω resistor in series with the FM811/ FM812 output and the μ P reset pin.


RESET Valid to 0V

A resistor can be added from the RESET pin to ground to ensure the RESET output remains low with V_{CC} down to 0V. A 100k Ω resistor connected from RESET to ground is recommended. The size of the resistor should be large enough to not load the RESET output and small enough to pull-down any stray leakage currents.



Packaging Information

4-Pin SOT-143

Tape and Reel Information

Ordering Information

Part Number	Top Marking*	RESET Threshold (V)	Output Type	Package	Packing Method
FM811LUX	KLYY	4.63	Push-Pull, active LOW	4-Pin, SOT143	3000 units in T&R
FM811MUX	KMYY	4.38	Push-Pull, active LOW	4-Pin, SOT143	3000 units in T&R
FM811JUX	KJYY	4.00	Push-Pull, active LOW	4-Pin, SOT143	3000 units in T&R
FM811TUX	KTYY	3.08	Push-Pull, active LOW	4-Pin, SOT143	3000 units in T&R
FM811SUX	KSYY	2.93	Push-Pull, active LOW	4-Pin, SOT143	3000 units in T&R
FM811RUX	KRYY	2.63	Push-Pull, active LOW	4-Pin, SOT143	3000 units in T&R
FM812LUX	LLYY	4.63	Push-Pull, active HIGH	4-Pin, SOT143	3000 units in T&R
FM812MUX	LMYY	4.38	Push-Pull, active HIGH	4-Pin, SOT143	3000 units in T&R
FM812JUX	LJYY	4.00	Push-Pull, active HIGH	4-Pin, SOT143	3000 units in T&R
FM812TUX	LTYY	3.08	Push-Pull, active HIGH	4-Pin, SOT143	3000 units in T&R
FM812SUX	LSYY	2.93	Push-Pull, active HIGH	4-Pin, SOT143	3000 units in T&R
FM812RUX	LRYY	2.63	Push-Pull, active HIGH	4-Pin, SOT143	3000 units in T&R

* YY = Lot Code

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.