Preliminary

Features

- Voltage level shifting

■ 4Ω switch connection between two ports

- Minimal propagation delay through the switch
- Low loc

Zero bounce in flow-through mode

- Control inputs compatible with TTL level
- Packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Preliminary)

Applications Note

Select pins $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$ and S_{5} are intended to be used as static user configurable control pins. The AC performance of these pins has not been characterized or tested. Switching of these select pins during system operation may temporarily disrupt output logic states and/or enable pin controls
40 -bit configuration can be achieved by connecting the $\overline{\mathrm{OE}}_{1}$ and the $\overline{\mathrm{OE}}_{6}$ pins to together.

Ordering Code:

Order Number	Package Number	Package Description
FSTD32450GX	BGA114A	114-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
(Note 1)	(Preliminary)	[Tape and Reel]

Note 1: BGA package available in Tape and Reel only.

Pin Descriptions

Pin Name	Description
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}, \overline{\mathrm{OE}}_{3}, \overline{\mathrm{OE}}_{4}$,	Bus Switch
$\overline{\mathrm{OE}}_{5}, \overline{\mathrm{OE}}_{6}, \overline{\mathrm{OE}}_{7}, \overline{\mathrm{OE}}_{8}$	Enables
$\overline{\mathrm{OE}}_{9}, \overline{\mathrm{OE}}_{10}$	
$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}$	Bus A
$1 \mathrm{~B}, 2 \mathrm{~B}, 3 \mathrm{~B}, 4 \mathrm{~B}$	Bus B
$\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$	Bit Configuration Enables
$\mathrm{S}_{2}, \mathrm{~S}_{5}$	Level Shifting Diode Enables

FBGA Pin Assignments

	1	2	3	4	5	6
A	$1 \mathrm{~A}_{4}$	$1 \mathrm{~A}_{2}$	$\overline{\mathrm{OE}}_{1}$	$\overline{\mathrm{OE}}_{2}$	$1 \mathrm{~B}_{2}$	$1 \mathrm{~B}_{4}$
B	$1 \mathrm{~A}_{6}$	$1 \mathrm{~A}_{5}$	$1 \mathrm{~A}_{1}$	$1 \mathrm{~B}_{1}$	$1 \mathrm{~B}_{5}$	$1 \mathrm{~B}_{6}$
C	$1 \mathrm{~A}_{8}$	$1 \mathrm{~A}_{7}$	$1 \mathrm{~A}_{3}$	$1 \mathrm{~B}_{3}$	$1 \mathrm{~B}_{7}$	$1 \mathrm{~B}_{8}$
D	$1 \mathrm{~A}_{10}$	$1 \mathrm{~A}_{9}$	GND	$\overline{\mathrm{OE}}_{5}$	$1 \mathrm{~B}_{9}$	$1 \mathrm{~B}_{10}$
E	$2 \mathrm{~A}_{2}$	$2 \mathrm{~A}_{1}$	S_{0}	V_{CC}	$2 \mathrm{~B}_{1}$	$2 \mathrm{~B}_{2}$
F	$2 \mathrm{~A}_{4}$	$2 \mathrm{~A}_{3}$	S_{1}	S_{2}	$2 \mathrm{~B}_{3}$	$2 \mathrm{~B}_{4}$
G	$2 \mathrm{~A}_{6}$	$2 \mathrm{~A}_{5}$	V_{Cc}	GND	$2 \mathrm{~B}_{5}$	$2 \mathrm{~B}_{6}$
H	$2 \mathrm{~A}_{8}$	$2 \mathrm{~A}_{7}$	GND	GND	$2 \mathrm{~B}_{7}$	$2 \mathrm{~B}_{8}$
J	$2 \mathrm{~A}_{10}$	$2 \mathrm{~A}_{9}$	GND	GND	$2 \mathrm{~B}_{9}$	$2 \mathrm{~B}_{1}$
K	$\overline{\mathrm{OE}}_{4}$	$\overline{\mathrm{OE}}_{8}$	GND	GND	$\overline{\mathrm{OE}}_{9}$	$\overline{\mathrm{OE}}_{3}$
L	$3 \mathrm{~A}_{10}$	$3 \mathrm{~A}_{9}$	GND	GND	$3 \mathrm{~B}_{9}$	$3 \mathrm{~B}_{10}$
M	$3 \mathrm{~A}_{8}$	$3 \mathrm{~A}_{7}$	GND	GND	$3 B_{7}$	$3 \mathrm{~B}_{8}$
N	$3 \mathrm{~A}_{6}$	$3 \mathrm{~A}_{5}$	GND	V_{CC}	$3 \mathrm{~B}_{5}$	$3 \mathrm{~B}_{6}$
P	$3 \mathrm{~A}_{4}$	$3 \mathrm{~A}_{3}$	S_{5}	S_{4}	$3 \mathrm{~B}_{3}$	$3 \mathrm{~B}_{4}$
R	$3 \mathrm{~A}_{2}$	$3 \mathrm{~A}_{1}$	V_{cc}	S_{3}	$3 \mathrm{~B}_{1}$	$3 \mathrm{~B}_{2}$
T	$4 \mathrm{~A}_{10}$	$4 \mathrm{~A}_{9}$	$\overline{\mathrm{OE}}_{10}$	GND	$4 \mathrm{~B}_{9}$	$4 \mathrm{~B}_{10}$
U	$4 \mathrm{~A}_{8}$	$4 \mathrm{~A}_{7}$	$4 \mathrm{~A}_{3}$	$4 \mathrm{~B}_{3}$	$4 \mathrm{~B}_{7}$	$4 \mathrm{~B}_{8}$
V	$4 \mathrm{~A}_{6}$	$4 A_{5}$	$4 \mathrm{~A}_{1}$	$4 \mathrm{~B}_{1}$	$4 \mathrm{~B}_{5}$	$4 \mathrm{~B}_{6}$
W	$4 \mathrm{~A}_{4}$	$4 \mathrm{~A}_{2}$	$\overline{\mathrm{OE}}_{7}$	$\overline{\mathrm{OE}}_{6}$	$4 \mathrm{~B}_{2}$	$4 \mathrm{~B}_{4}$

Preliminary

www.fairchildsemi.com

Functional Description

The device can also be configured as an 8 and 16-bit device by grounding the unused pins in Configurations 2 and 1 respectively. The 8 -bit configuration may also be achieved by tying two of the 4 -bit enables from configuration together and tying the remaining enable pin $(\overline{\mathrm{OE}}) \mathrm{HIGH}$.

Truth Tables ($\mathrm{x}=\mathrm{v}_{\mathrm{cc}}$ or GND)
(see Functional Description)

Select Pin	
$\mathbf{S}_{\mathbf{2}}, \mathbf{S}_{5}$	Mode
L	Std. NMOS Switch
H	Level Shifting Diode Enabled

20-Bit Configuration ($\mathrm{S}_{0}=\mathrm{S}_{1}=\mathrm{L}$)

Inputs					Inputs/Outputs
$\overline{\mathrm{OE}}_{1}$	$\overline{\mathrm{OE}}_{2}$	$\overline{\mathrm{OE}}_{3}$	$\overline{\mathrm{OE}}_{4}$	$\overline{\mathrm{OE}}_{5}$	
L	X	X	X	X	$1 \mathrm{~A}_{1-10}=1 \mathrm{~B}_{1-10}, 2 \mathrm{~A}_{1-10}=2 \mathrm{~B}_{1-10}$
H	X	X	X	X	Z
$\mathrm{S}_{3}=\mathrm{S}_{4}=\mathbf{L}$					
Inputs					Inputs/Outputs
$\overline{\mathrm{OE}}_{6}$	$\overline{\mathrm{OE}}_{7}$	$\overline{\mathrm{OE}}_{8}$	$\overline{\mathrm{OE}}_{9}$	$\overline{\mathrm{OE}}_{10}$	
L	X	X	X	X	$3 \mathrm{~A}_{1-10}=3 \mathrm{~B}_{1-10}, 4 \mathrm{~A}_{1-10}=4 \mathrm{~B}_{1-10}$
H	X	X	X	X	Z

$$
\text { 10-Bit Configuration }\left(S_{0}=L, S_{1}=H\right)
$$

Inputs					Inputs/Outputs	
$\overline{\mathrm{OE}}_{1}$	$\overline{\mathrm{OE}}_{2}$	$\overline{\mathrm{OE}}_{3}$	$\overline{\mathrm{OE}}_{4}$	$\overline{\mathrm{OE}}_{5}$	$1 A_{1-10}=1 B_{1-10}$	$2 A_{1-10}=2 B_{1-10}$
L	X	X	L	X	$1 \mathrm{~A}_{\mathrm{X}}=1 \mathrm{~B}_{\mathrm{X}}$	$2 \mathrm{~A}_{\mathrm{X}}=2 \mathrm{~B}_{\mathrm{X}}$
L	X	X	H	X	$1 A_{X}=1 B_{X}$	Z
H	X	X	L	X	Z	$2 \mathrm{~A}_{\mathrm{X}}=2 \mathrm{~B}_{\mathrm{X}}$
H	X	X	H	X	Z	Z
$S_{3}=L, S_{4}=H$						
Inputs					Inputs/Outputs	
$\overline{\mathrm{OE}}_{6}$	$\overline{\mathrm{OE}}_{7}$	$\overline{\mathrm{OE}}_{8}$	$\overline{\mathrm{OE}}_{9}$	$\overline{\mathrm{OE}}_{10}$	$4 A_{1-10}=4 B_{1-10}$	$3 A_{1-10}=3 B_{1-10}$
L	X	X	L	X	$4 A_{X}=4 B_{X}$	$3 \mathrm{~A}_{\mathrm{X}}=3 \mathrm{~B}_{\mathrm{X}}$
L	X	X	H	X	$4 \mathrm{~A}_{\mathrm{X}}=4 \mathrm{~B}_{\mathrm{X}}$	Z
H	X	X	L	X	Z	$3 \mathrm{~A}_{\mathrm{X}}=3 \mathrm{~B}_{\mathrm{X}}$
H	X	X	H	X	Z	Z

Truth Tables (Continued)
5-Bit Configuration ($\mathrm{S}_{0}=\mathrm{H}, \mathrm{S}_{1}=\mathrm{L}$)

Inputs					Inputs/Outputs			
$\overline{\mathrm{OE}}_{1}$	$\overline{\mathrm{OE}}_{2}$	$\overline{\mathrm{OE}}_{3}$	$\overline{\mathrm{OE}}_{4}$	$\overline{\mathrm{OE}}_{5}$	$1 A_{1-5}, 1 B_{1-5}$	$1 A_{6-10}, 1 B_{6-10}$	$2 \mathrm{~A}_{1-5}, 2 \mathrm{~B}_{1-5}$	2A ${ }_{6-10}, 2 \mathrm{~B}_{6-10}$
L	L	L	L	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	$1 \mathrm{~A}_{\mathrm{y}}=1 \mathrm{~B}_{\mathrm{y}}$	$2 A_{x}=2 B_{x}$	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
L	L	L	H	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	$1 \mathrm{~A}_{\mathrm{y}}=1 \mathrm{~B}_{\mathrm{y}}$	$2 \mathrm{~A}_{\mathrm{x}}=2 \mathrm{~B}_{\mathrm{x}}$	Z
L	L	H	L	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	$1 A_{y}=1 B_{y}$	Z	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
L	L	H	H	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	$1 A_{y}=1 B_{y}$	Z	Z
L	H	L	L	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	Z	$2 \mathrm{~A}_{\mathrm{x}}=2 \mathrm{~B}_{\mathrm{x}}$	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
L	H	L	H	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	Z	$2 \mathrm{~A}_{\mathrm{x}}=2 \mathrm{~B}_{\mathrm{x}}$	Z
L	H	H	L	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	Z	Z	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
L	H	H	H	X	$1 \mathrm{~A}_{\mathrm{x}}=1 \mathrm{~B}_{\mathrm{x}}$	Z	Z	Z
H	L	L	L	X	Z	$1 \mathrm{~A}_{\mathrm{y}}=1 \mathrm{~B}_{\mathrm{y}}$	$2 \mathrm{~A}_{\mathrm{x}}=2 \mathrm{~B}_{\mathrm{x}}$	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
H	L	L	H	X	Z	$1 A_{y}=1 B_{y}$	$2 \mathrm{~A}_{\mathrm{x}}=2 \mathrm{~B}_{\mathrm{x}}$	Z
H	L	H	L	X	Z	$1 \mathrm{~A}_{\mathrm{y}}=1 \mathrm{~B}_{\mathrm{y}}$	Z	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
H	L	H	H	X	Z	$1 \mathrm{~A}_{\mathrm{y}}=1 \mathrm{~B}_{\mathrm{y}}$	Z	Z
H	H	L	L	X	Z	Z	$2 \mathrm{~A}_{\mathrm{x}}=2 \mathrm{~B}_{\mathrm{x}}$	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
H	H	L	H	X	Z	Z	$2 \mathrm{~A}_{\mathrm{x}}=2 \mathrm{~B}_{\mathrm{x}}$	Z
H	H	H	L	X	Z	Z	Z	$2 \mathrm{~A}_{\mathrm{y}}=2 \mathrm{~B}_{\mathrm{y}}$
H	H	H	H	X	Z	Z	Z	Z
$\mathbf{S}_{3}=\mathbf{H}, \mathbf{S}_{\mathbf{4}}=\mathbf{L}$								
Inputs					Inputs/Outputs			
$\overline{\mathrm{OE}}_{6}$	$\overline{\mathrm{OE}}_{7}$	$\overline{\mathrm{OE}}_{8}$	$\overline{\mathrm{OE}}_{9}$	$\overline{\mathrm{OE}}_{10}$	$4 A_{1-5}, 4 B_{1-5}$	$4 \mathrm{~A}_{6-10}, 4 \mathrm{~B}_{6-10}$	$3 A_{1-5}, 3 B_{1-5}$	$3 A_{6-10}, 3 B_{6-10}$
L	L	L	L	X	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	$4 A_{y}=4 B_{y}$	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$
L	L	L	H	X	$4 A_{x}=4 B_{x}$	$4 A_{y}=4 B_{y}$	$3 A_{x}=3 B_{x}$	Z
L	L	H	L	X	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	Z	$3 A_{y}=3 B_{y}$
L	L	H	H	X	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	Z	Z
L	H	L	L	X	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	Z	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$
L	H	L	H	X	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	Z	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	Z
L	H	H	L	X	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	Z	Z	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$
L	H	H	H	X	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	Z	Z	Z
H	L	L	L	X	Z	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$
H	L	L	H	X	Z	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	Z
H	L	H	L	X	Z	$4 A_{y}=4 B_{y}$	Z	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$
H	L	H	H	X	Z	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	Z	Z
H	H	L	L	X	Z	Z	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$
H	H	L	H	X	Z	Z	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	Z
H	H	H	L	X	Z	Z	Z	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$
H	H	H	H	X	Z	Z	Z	Z

Truth Tables (Continued)
4-Bit Configuration ($\mathrm{S}_{0}=\mathrm{S}_{1}=\mathrm{H}$)

Inputs					Inputs/Outputs				
OE_{1}	OE_{2}	OE_{3}	OE_{4}	OE_{5}	$\mathbf{1 A}_{1-4}, \mathbf{1 B}_{1-4}$	$1 \mathrm{~A}_{5-8}, 1 \mathrm{~B}_{5-8}$	$2 \mathrm{~A}_{3-6}, 2 \mathrm{~B}_{3-6}$	$2 \mathrm{~A}_{7-10}, 2 \mathrm{~B}_{7-10}$	$\begin{aligned} & 1 \mathrm{~A}_{9-10}, 2 \mathrm{~B}_{9-10} \\ & 2 \mathrm{~A}_{1-2}, 2 \mathrm{~B}_{1-2} \end{aligned}$

Preliminary

Truth Tables (Continued) 4-Bit Configuration (continued)									
$\mathrm{S}_{3}=\mathrm{S}_{4}=\mathrm{H}$									
Inputs					Inputs/Outputs				
OE_{6}	OE_{7}	OE_{8}	OE_{9}	OE_{10}	$4 A_{1-4}, 4 B_{1-4}$	$4 A_{5-8}, 4 B_{5-8}$	3 $A_{3-6}, 3 B_{3-6}$	$3 A_{7-10}, 3 B_{7-10}$	$\begin{gathered} 3 A_{1-2}, 3 B_{1-2} \\ 4 A_{9-10}, 3 B_{9-10} \end{gathered}$
L	L	L	L	L	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	$4 A_{y}=4 B_{y}$	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	$3 A_{y}=3 B_{y}$	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
L	L	L	L	H	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	$4 A_{y}=4 B_{y}$	$3 A_{x}=3 B_{x}$	$3 A_{y}=3 B_{y}$	Z
L	L	L	H	L	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	Z	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
L	L	L	H	H	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	Z	Z
L	L	H	L	L	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	Z	$3 A_{y}=3 B_{y}$	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
L	L	H	L	H	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	Z	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$	Z
L	L	H	H	L	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	Z	Z	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
L	L	H	H	H	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	Z	Z	Z
L	H	L	L	L	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	Z	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
L	H	L	L	H	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	Z	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$	Z
L	H	L	H	L	$4 A_{x}=4 B_{x}$	Z	$3 A_{x}=3 B_{x}$	Z	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
L	H	L	H	H	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	Z	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	Z	Z
L	H	H	L	L	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	Z	Z	$3 A_{y}=3 B_{y}$	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
L	H	H	L	H	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	Z	Z	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$	Z
L	H	H	H	L	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	Z	Z	Z	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
L	H	H	H	H	$4 \mathrm{~A}_{\mathrm{x}}=4 \mathrm{~B}_{\mathrm{x}}$	Z	Z	Z	Z
H	L	L	L	L	Z	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	$3 A_{y}=3 B_{y}$	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
H	L	L	L	H	Z	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$	Z
H	L	L	H	L	Z	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	Z	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
H	L	L	H	H	Z	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	Z	Z
H	L	H	L	L	Z	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	Z	$3 A_{y}=3 B_{y}$	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
H	L	H	L	H	Z	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	Z	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$	Z
H	L	H	H	L	Z	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	Z	Z	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
H	L	H	H	H	Z	$4 \mathrm{~A}_{\mathrm{y}}=4 \mathrm{~B}_{\mathrm{y}}$	Z	Z	Z
H	H	L	L	L	Z	Z	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
H	H	L	L	H	Z	Z	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$	Z
H	H	L	H	L	Z	Z	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	Z	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
H	H	L	H	H	Z	Z	$3 \mathrm{~A}_{\mathrm{x}}=3 \mathrm{~B}_{\mathrm{x}}$	Z	Z
H	H	H	L	L	Z	Z	Z	$3 A_{y}=3 B_{y}$	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
H	H	H	L	H	Z	Z	Z	$3 \mathrm{~A}_{\mathrm{y}}=3 \mathrm{~B}_{\mathrm{y}}$	Z
H	H	H	H	L	Z	Z	Z	Z	$\begin{aligned} & 3 \mathrm{~A}_{\mathrm{z}}=3 \mathrm{~B}_{\mathrm{z}} \\ & 4 \mathrm{~A}_{\mathrm{z}}=4 \mathrm{~B}_{\mathrm{z}} \end{aligned}$
H	H	H	H	H	Z	Z	Z	Z	Z

Absolute Maximum Ratings（Note 2）

Supply Voltage（ V_{CC} ）
DC Switch Voltage（ V_{S} ）（Note 3）
DC Input Control Pin Voltage
（ $\mathrm{V}_{\text {IN }}$ ）（Note 4）
DC Input Diode Current（ l_{IK} ） $\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$
DC Output（IOUT）Current
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current $\left(\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}\right)$
Storage Temperature Range（ $\mathrm{T}_{\mathrm{STG}}$ ）
-0.5 V to +7.0 V
-2.0 V to +7.0 V
-0.5 V to +7.0 V
$-50 \mathrm{~mA}$
128 mA
$+/-100 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions（Note 5）

Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\text {OUT }}\right)$	0 V to 5.5 V
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note 2：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．The device should not be operated at these limits．The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．
Note 3： V_{S} is the voltage observed／applied at either the A or B Ports across the switch．
Note 4：The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed
Note 5：Unused control inputs must be held HIGH or LOW．They may not float．

DC Electrical Characteristics

Symbol	Parameter	$V_{c c}$ （V）	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ （Note 6）	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			－1．2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4．0－5．5	2.0			V	IF $\mathrm{S}_{2}=\mathrm{HIGH} \quad 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4．0－5．5			0.8	V	IF S ${ }_{2}=\mathrm{HIGH} \quad 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$
V_{OH}	HIGH Level Output Voltage	4．5－5．5	See Figure 3			V	$\mathrm{S}_{2}=\mathrm{S}_{5}=\mathrm{V}_{\mathrm{CC}}$
I	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
$\mathrm{I}_{\text {Oz }}$	OFF－STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance （Note 7）	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}, \mathrm{~S}_{2}=\mathrm{S}_{5}=0 \mathrm{~V}$ or V_{CC}
		4.5		4	7	Ω	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}, \mathrm{~S}_{2}=\mathrm{S}_{5}=0 \mathrm{~V}$ or V_{CC}
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}, \mathrm{~S}_{2}=\mathrm{S}_{5}=0 \mathrm{~V}$
		4.0		11	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}, \mathrm{~S}_{2}=\mathrm{S}_{5}=0 \mathrm{~V}$
		4.5		35	50	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}, \mathrm{~S}_{2}=\mathrm{S}_{5}=\mathrm{V}_{\mathrm{CC}}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{S}_{2}=\mathrm{S}_{5}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND， $\mathrm{I}_{\text {OUT }}=0$
					10	$\mu \mathrm{A}$	$\mathrm{S}_{2}=\mathrm{S}_{5}=\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}_{\mathrm{x}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND， $\mathrm{I}_{\text {OUT }}=0$
					1.5	mA	$\mathrm{S}_{2}=\mathrm{S}_{5}=\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}_{\mathrm{x}}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND， $\mathrm{I}_{\text {OUT }}=0$
$\triangle \mathrm{I}_{\mathrm{CC}}$	Increase in I_{CC} per Input	5.5			2.5	mA	One Input at 3.4 V Other Inputs at V_{CC} or $\mathrm{GND}, \mathrm{S}_{2}=0 \mathrm{~V}$
					4.0	mA	One Input at 3.4 V Other Inputs at V_{CC} or $\mathrm{GND}, \mathrm{S}_{2}=\mathrm{V}_{\mathrm{CC}}$

Note 7：Measured by the voltage drop between A and B pins at the indicated current through the switch．On Resistance is determined by the lower of the voltages on the two（A or B）pins．

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{U}}=\mathrm{R}_{\mathrm{D}}=500 \Omega \end{gathered}$				Units	Conditions$\left(S_{2}=S_{5}=0 V\right)$	Figure Number
		$\mathrm{V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Bus-to-Bus (Note 8)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	$\begin{gathered} \hline \text { Figures } \\ 1,2 \end{gathered}$
$\overline{t_{\text {PZH }}, \mathrm{t}_{\text {PZL }}}$	Output Enable Time	1.5	6.5		7.0	ns	$\begin{aligned} & V_{1}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	$\begin{gathered} \text { Figures } \\ 1,2 \end{gathered}$
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.5	6.7		7.2	ns	$\begin{aligned} & \hline V_{1}=7 \mathrm{~V} \text { for } t_{\mathrm{PLZ}} \\ & \mathrm{~V}_{1}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	$\begin{gathered} \text { Figures } \\ 1,2 \end{gathered}$
$\overline{t_{\text {PZH }}, \mathrm{t}_{\text {PZL }}}$	$\mathrm{S}_{\text {el }}\left(\mathrm{S}_{0,1}\right)$ to Output Enable Time	1.5	7.0		7.5	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	$\begin{gathered} \hline \text { Figures } \\ 1,2 \end{gathered}$
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	$\mathrm{S}_{\text {el }}\left(\mathrm{S}_{0,1}\right)$ to Output Disable Time	1.5	7.5		7.7	ns	$\begin{aligned} & V_{I}=7 \mathrm{~V} \text { for } t_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	$\begin{gathered} \hline \text { Figures } \\ 1,2 \end{gathered}$

Note 8: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

AC Electrical Characteristics: Translating Diode

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{U}}=\mathrm{R}_{\mathrm{D}}=500 \Omega \\ \mathrm{~V}_{\mathrm{CC}}=4.5-5.5 \mathrm{~V} \end{gathered}$		Units	Conditions$\left(S_{2}=S_{5}=V_{c c}\right)$	Figure Number
		Min	Max			
$\overline{t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}}$	Propagation Delay Bus-to-Bus (Note 9)		0.25	ns	$\mathrm{V}_{1}=$ OPEN	$\begin{gathered} \text { Figures } \\ 1,2 \end{gathered}$
$\overline{t_{\text {PZH }}, t_{\text {PZL }}}$	Output Enable Time	1.5	10.0	ns	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	$\begin{gathered} \hline \text { Figures } \\ 1,2 \end{gathered}$
$\overline{t_{\text {PHZ }}, t_{\text {PLZ }}}$	Output Disable Time	1.5	9.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	$\begin{gathered} \text { Figures } \\ 1,2 \end{gathered}$
$\overline{t_{\text {PZH }}, t_{\text {PZL }}}$	$\mathrm{S}_{\mathrm{el}}\left(\mathrm{S}_{0,1}\right)$ to Output Enable Time	1.5	11.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Figures 1, 2
$\overline{t_{\text {PHZ }}, t_{\text {PLZ }}}$	$\mathrm{S}_{\text {el }}\left(\mathrm{S}_{0,1}\right)$ to Output Disable Time	1.5	10.0	ns	$\begin{aligned} & \hline V_{I}=7 V \text { for } t_{P L Z} \\ & V_{I}=\text { OPEN for } t_{P H Z} \end{aligned}$	$\begin{gathered} \text { Figures } \\ 1,2 \end{gathered}$

Note 9: This parameter is guaranteed by design but is not tested. This bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 10)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	4		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{C}_{I / \mathrm{O}}$	Input/Output Capacitance "OFF State"	8		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V}$
Note 10: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, Capacitance is characterized but not tested.					

Preliminary

Preliminary
FSTD32450

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA114ArevE

114-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
Package Number BGA114A
Preliminary

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
