FSTUD16211 24-Bit Bus Switch with –2V Undershoot Protection and Level Shifting

FAIRCHILD

SEMICONDUCTOR

FSTUD16211 24-Bit Bus Switch with -2V Undershoot Protection and Level Shifting

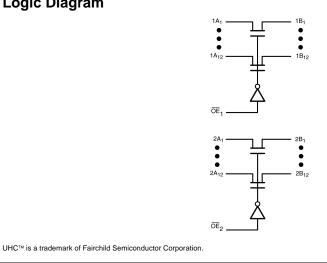
General Description

The Fairchild Switch FSTUD16211 provides 24-bits of high-speed CMOS TTL-compatible bus switching. The low on resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise. A diode to V_{CC} has been integrated into the circuit to allow for level shifting between 5V inputs and 3.3V outputs.

The device is organized as a 12-bit or 24-bit bus switch. When \overline{OE}_1 is LOW, the switch is ON and Port 1A is connected to Port 1B. When \overline{OE}_2 is LOW, Port 2A is connected to Port 2B. When $\overline{OE}_{1/2}$ is HIGH, a high impedance state exists between the A and B Ports. The A and B Ports have "undershoot hardened" circuit protection to support an extended range to 2.0V below ground. Fairchild's integrated Undershoot Hardened Circuit (UHC™) senses undershoot at the I/O's, and responds by preventing voltage differentials from developing and turning on the switch.

Features

- Undershoot hardened to -2V (A and B Ports) Voltage level shifting
- \blacksquare 4 Ω switch connection between two ports
- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Control inputs compatible with TTL level
- See Applications Note AN-5008 for details
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Preliminary)


Ordering Code:

Order Number	Package Number	Package Description
FSTUD16211GX (Note 1)		54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide [TAPE and REEL]
FSTUD16211MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Note 1: BGA package available in Tape and Reel only.

Logic Diagram

Connection Diagrams

Pin Assignment for TSSOP						
NC —	1	56				
1A ₁ —	2	55				
1A ₂ —	3	54	— 1B ₁			
1A ₃ —	4	53	— 1B ₂			
1A4 —	5	52	— 1B ₃			
1A ₅ —	6	51	— 1B ₄			
1A ₆ —	7	50	— 1B ₅			
GND —	8	49	- GND			
1A7 —	9	48	— 1B ₆			
1A ₈ —	10	47	— 1B ₇			
1A ₉ —	11	46	— 1B ₈			
1A ₁₀ —	12	45	— 1B ₉			
1A ₁₁ —	13	44	— 1B ₁₀			
1A ₁₂ —	14	43	— 1B ₁₁			
2A1 —	15	42	— 1B ₁₂			
2A2-	16	41	— 2B ₁			
V _{CC} _	17	40	— 2B ₂			
2A3-	18	39	— 2B ₃			
GND-	19	38	— GND			
2A4—	20	37	— 2B ₄			
2A5-	21	36	— 2B ₅			
2A ₆ —	22	35	— 2B ₆			
2A7-	23	34	— 2B ₇			
2A ₈ —	24	33	— 2B ₈			
2A9 —	25	32	— 2B ₉			
2A ₁₀ —	26	31	— 2B ₁₀			
2A ₁₁ —	27	30	— 2B ₁₁			
2A ₁₂ —	28	29	— 2B ₁₂			
			I			

Pin Assignment for FBGA

	1	2	з	4	5	6
A	0	0	0	0	0	0
В	Ó	0	0	0	0	0
υ	0	0	0	0	0	0
Δ	0	0	0	0	0	0
ш	0	0	Ο	0	0	0
ш	0	0	Ο	0	0	0
Q	0	0	0	0	0	0
н	0	0	Ο	0	0	0
ſ	0	0	0	0	0	0
J	-	-	-	-	-	-

(Top Thru View)

Pin Descriptions

Pin Name	Description
$\overline{OE}_1, \overline{OE}_2$	Bus Switch Enables
1A, 2A	Bus A
1B, 2B	Bus B
NC	No Connect

Pin Assignment for FBGA

	1	2	3	4	5	6
Α	1A ₂	1A ₁	NC	OE ₂	1B ₁	1B ₂
В	1A ₄	1A ₃	1A ₇	OE ₁	1B ₃	1B ₄
С	1A ₆	1A ₅	GND	1B ₇	1B ₅	1B ₆
D	1A ₁₀	1A ₉	1A ₈	1B ₈	1B ₉	1B ₁₀
Е	1A ₁₂	1A ₁₁	2A ₁	2B ₁	1B ₁₁	1B ₁₂
F	2A ₄	2A ₃	2A ₂	2B ₂	2B ₃	2B ₄
G	2A ₆	2A ₅	V _{CC}	GND	2B ₅	2B ₆
н	2A ₈	2A ₇	2A ₉	2B ₉	2B ₇	2B ₈
J	2A ₁₂	2A ₁₁	2A ₁₀	2B ₁₀	2B ₁₁	2B ₁₂

Truth Table

Inp	uts	Inputs/Outputs		
OE ₁	OE ₂	1A, 1B	2A, 2B	
L	L	1A = 1B	2A = 2B	
L	Н	1A = 1B	Z	
н	L	Z	2A = 2B	
н	Н	Z	Z	

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S) (Note 3)	-2.0V to +7.0V
DC Input Control Pin Voltage (VIN)(Note 4)	-0.5V to +7.0V
DC Input Diode Current (I_{IK}) $V_{IN} < 0V$	–50 mA
DC Output (I _{OUT})	128 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	+/- 100 mA
Storage Temperature Range (T _{STG})	–65°C to +150 °C

Recommended Operating

Conditions (Note 5)						
Power Supply Operating $(V_{CC)}$	4.5V to 5.5V					
Input Voltage (V _{IN})	0V to 5.5V					
Output Voltage (V _{OUT})	0V to 5.5V					
Input Rise and Fall Time (t_r, t_f)						
Switch Control Input	0 ns/V to 5 ns/V					
Switch I/O	0 ns/V to DC					
Free Air Operating Temperature (T _A)	-40 °C to +85 °C					

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: V_S is the voltage observed/applied at either A or B Ports across the switch.

Note 4: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 5: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics	

-		V _{cc}	$T_A = -40 \ ^\circ C \ to \ +85 \ ^\circ C$				
Symbol	Parameter	(V)	Min	Typ (Note 6)	Max	Units	Conditions
V _{IK}	Clamp Diode Voltage	4.5			-1.2	V	I _{IN} = -18 mA
VIH	HIGH Level Input Voltage	4.5–5.5	2.0			V	
V _{IL}	LOW Level Input Voltage	4.5-5.5			0.8	V	
V _{OH}	HIGH Level	4.5–5.5		See Figure 4		V	
l _l	Input Leakage Current	5.5			±1.0	μΑ	$0 \le V_{IN} \le 5.5V$
		0			10	μΑ	$V_{IN} = 5.5V$
I _{OZ}	OFF-STATE Leakage Current	5.5			±1.0	μΑ	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance	4.5		4	7	Ω	$V_{IN} = 0V, I_{IN} = 64 \text{ mA}$
	(Note 7)	4.5		4	7	Ω	$V_{IN} = 0V, I_{IN} = 30 \text{ mA}$
		4.5		35	50	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$
Icc	Quiescent Supply Current	5.5			1.5	mA	$OE_1 = OE_2 = GND$ $V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$
		0.0			10	μΑ	$\begin{aligned} &OE_1 = OE_2 = V_{CC} \\ &V_{IN} = V_{CC} \text{ or GND, } I_{OUT} = 0 \end{aligned}$
ΔI_{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	One Input at 3.4V Other Inputs at V _{CC} or GND
V _{IKU}	Voltage Undershoot	5.5			-2.0	V	$\frac{0.0 \text{ mA} \ge I_{\text{IN}} \ge -50 \text{ mA}}{\overline{\text{OE}}_{1, 2} = 5.5 \text{V}}$

Note 6: Typical values are at V_{CC} = 5.0V and $T_{A}\text{=}+25^{\circ}\text{C}$

Note 7: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

FSTUD16211

AC Electrical Characteristics

Symbol	Parameter	C _L = 50pF, R	$T_{A} = -40 \ ^{\circ}\text{C to } +85 \ ^{\circ}\text{C},$ $C_{L} = 50\text{pF}, \text{RU} = \text{RD} = 500\Omega$ $V_{CC} = 4.5 - 5.5\text{V}$		Conditions	Figure No.
		Min	Max			
t _{PHL} , t _{PLH}	Propagation Delay Bus to Bus (Note 8)		0.25	ns	V _I = OPEN	Figures 2, 3
t _{PZH} , t _{PZL}	Output Enable Time	1.5	5.5	ns	$V_I = 7V$ for t_{PZL} $V_I = OPEN$ for t_{PZH}	Figures 2, 3
t _{PHZ} , t _{PLZ}	Output Disable Time	1.5	6.5	ns	$V_I = 7V$ for t_{PLZ} $V_I = OPEN$ for t_{PHZ}	Figures 2, 3

Note 8: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 9)

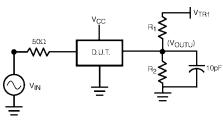
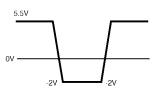
Symbol	Parameter	Тур	Max	Units	Conditions		
CIN	Control pin Input Capacitance	3.5		pF	$V_{CC} = 5.0V$		
CI/O OFF	Input/Output Capacitance "OFF State"	5.5		pF	$V_{CC} = 5.0V$, Switch OFF		
Nate 0: T USEOC 6 1 MUT Connectones is abstrategized but not tooled							

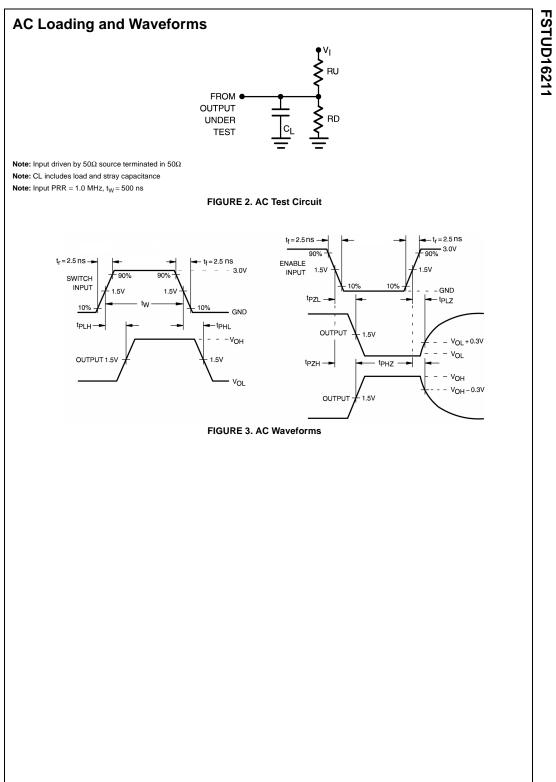
Note 9: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested.

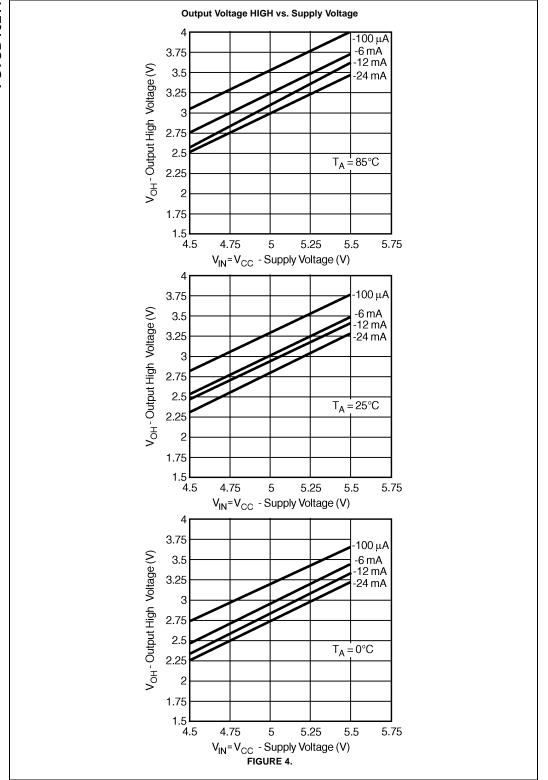
Undershoot Characteristic (Note 10)

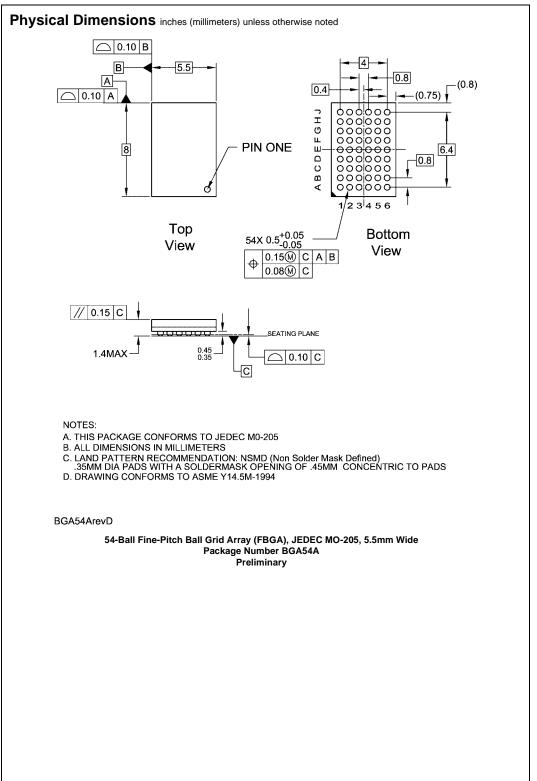
Symbol	Parameter	Min	Тур	Max	Units	Conditions	
V _{OUTU}	Output Voltage During Undershoot	2.5	V _{OH} – 0.3		V	Figure 1	
Note 10: This test is intended to characterize the device's protective canabilities by maintaining output signal integrity during an input transient voltage							

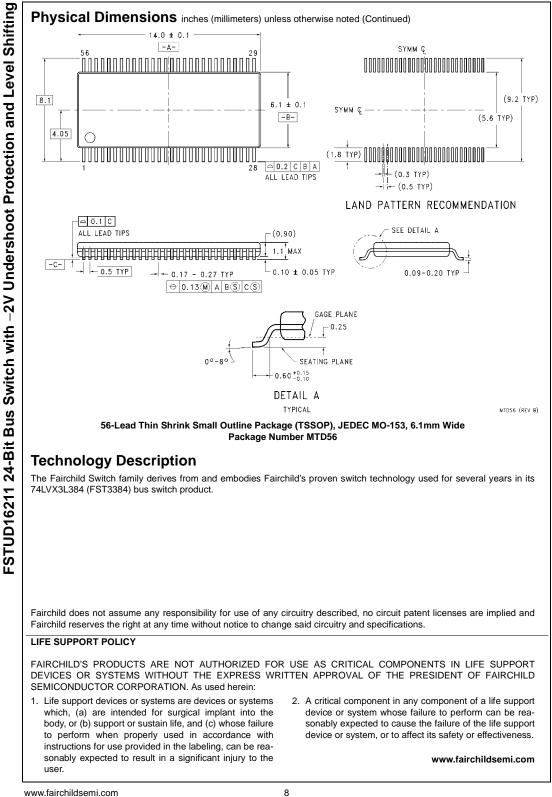
Note 10: This test is intended to characterize the device's protective capabilities by maintaining output signal integrity during an input transient voltage undershoot event.


FIGURE 1.


Device Test Conditions


Parameter	Value	Units		
V _{IN}	see Waveform	V		
$R_1 = R_2$	100K	Ω		
V _{TRI}	11.0	V		
V _{CC}	5.5	V		


Transient Input Voltage (V_{IN}) Waveform

