FAIRCHILD

SEMICONDUCTOR

NC7SZ10 TinyLogic® UHS 3-Input NAND Gate

General Description

The NC7SZ10 is a single 3-Input NAND Gate from Fairchild's Ultra High Speed Series of TinyLogic®. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} operating range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.

Features

- Space saving SC70 6-lead package
- Ultra small MicroPak[™] leadless package
- \blacksquare Ultra High Speed; t_{PD} 2.4 ns typ into 50 pF at 5V V_{CC}

August 2001

Revised June 2003

- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V–5.5V
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

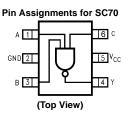
Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZ10P6X	MAA06A	Z10	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7SZ10L6X	MAC06A	E6	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Logic Symbol

Pin Descriptions

Pin Names	Description
A, B, C	Inputs
Y	Output

Function Table

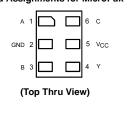

$\mathbf{Y} = \mathbf{ABC}$							
	Output						
Α	В	С	Y				
Х	Х	L	Н				
Х	L	Х	н				
L	Х	Х	Н				
Н	н	н	L				
	I						

H = HIGH Logic Level L = LOW Logic Level

X = Either LOW or HIGH Logic Level

 $\label{eq:transformation} TinyLogic \circledast is a registered trademark of Fairchild Semiconductor Corporation. \\ MicroPak^{TM} is a trademark of Fairchild Semiconductor Corporation. \\$

www.fairchildsemi.com



Pin One Orientation Diagram

AAA represents Product Code Top Mark - see ordering code **Note:** Orientation of Top Mark determines Pin One location. Read the Top Product Code Mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignments for MicroPak

Connection Diagrams

Absolute Maximum Ratings(Note 1)

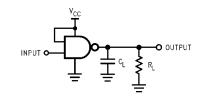
Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to +6V
DC Input Diode Current (IIK)	
@V _{IN} < -0.5V	–50 mA
@ V _{IN} > 6V	+20 mA
DC Output Diode Current (I _{OK})	
$@V_{OUT} < -0.5V$	–50 mA
@ V _{OUT} > 6V, V _{CC} = GND	+20 mA
DC Output Current (I _{OUT})	± 50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	\pm 50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SC70–5	150 mW

Recommended Operating Conditions (Note 2)	
Supply Voltage Operating (V _{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V _{CC})	1.5V to 5.5V
Input Voltage (V)	0V to 5 5V

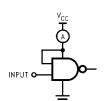
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
$\rm V_{CC}$ @ 1.8V, 2.5V $\pm 0.2V$	0 ns/V to 20 ns/V
$V_{CC} @ 3.3V \pm 0.3V$	0 ns/V to 10 ns/V
$V_{CC} @ 5.0V \pm 0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	
SC70-5	425°C/W
Note 1: Absolute maximum ratings are DC w may be damaged or have its useful life impu- tions should be met, without exception, to er reliable over its nover sunplu temperature	aired. The datasheet specifica- nsure that the system design is

tions should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics

Symbol	Parameter	v _{cc}	٦	「 _A = +25°	С	$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C}$ to $+85^{\circ}\textbf{C}$		Units	Conditions	
Symbol	Falameter	(V)	Min	Тур	Max	Min	Max	Units	0	numons
VIH	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.70 V _{CC}			$0.70 \ V_{CC}$		v		
VIL	LOW Level Input Voltage	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3 to 5.5			0.30 V _{CC}		$0.30 \ V_{CC}$	v		
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		2.3	2.2	2.3		2.2			V – V	I _ 100 A
		3.0	2.9	3.0		2.9			$V_{IN} = V_{IL} I_{OH} = -10$	$1_{OH} = -100 \mu$
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29		V		$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1			1 100 1
		3.0		0.0	0.1		0.1		VIN = VIH	$I_{OL} = 100 \ \mu A$
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24	V		$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±1		±10	μA	V _{IN} = 5.5V	, GND
I _{OFF}	Power Off Leakage Current	0.0			1		10	μA	V _{IN} or V _{OL}	_{JT} = 5.5V
I _{CC}	Quiescent Supply Current	1.65 to 5.5			2.0		20	μA	$V_{IN} = 5.5V$, GND


Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^{\circ}$	C to +85°C	Units	Conditions	Figure	
	raiameter	(V) Min Typ Max Min Max	Units	Conditions	Number					
t _{PLH} ,	Propagation Delay	1.8 ± 0.15	2.0	7.0	17.5	2.0	18.0			Figures 1, 3
t _{PHL}		2.5 ± 0.2	0.8	3.0	10.5	0.8	11.0	ns	$C_L = 15 \text{ pF},$	
		3.3 ± 0.3	0.5	2.4	7.5	0.5	8.0		$R_L = 1 \ M\Omega$	
		5.0 ± 0.5	0.5	2.0	5.5	0.5	6.0			
t _{PLH,}	Propagation Delay	3.3 ± 0.3	1.5	2.9	8.5	1.5	9.0	ns	$C_{L} = 50 \text{ pF},$	Figures
t _{PHL}		5.0 ± 0.5	0.8	2.4	7.5	0.8	8.0	115	$R_L=500\Omega$	ĭ, 3
CIN	Input Capacitance	0		4				pF		
C _{PD}	Power Dissipation Capacitance	3.3		24				pF	(Note 3)	Figure 2
		5.0		30				рг	(NOLE 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC} static).$

AC Loading and Waveforms

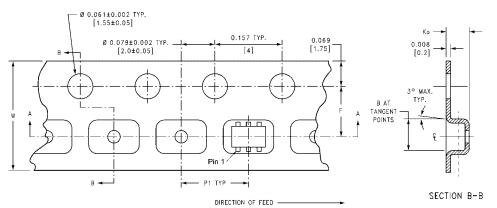
 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_w = 500 ns $\mbox{FIGURE 1. AC Test Circuit}$

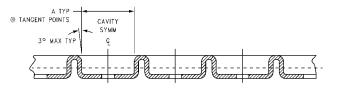
Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = 10 MHz; Duty Cycle = 50%

FIGURE 2. I_{CCD} Test Circuit

t_r = 3ns→ $t_f = 3 ns$ V_{CC} 90% 90% INPUT 50% 50% 10% 10% GND → t_{PHL} t_{PLH} √он OUTPUT 50% 50% V_{OL}

FIGURE 3. AC Waveforms

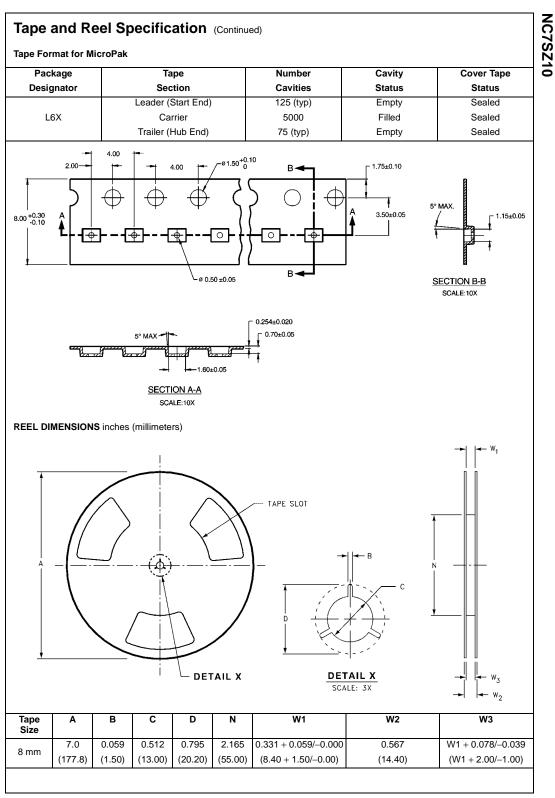



Tape and Reel Specification

Tape Format for SC70

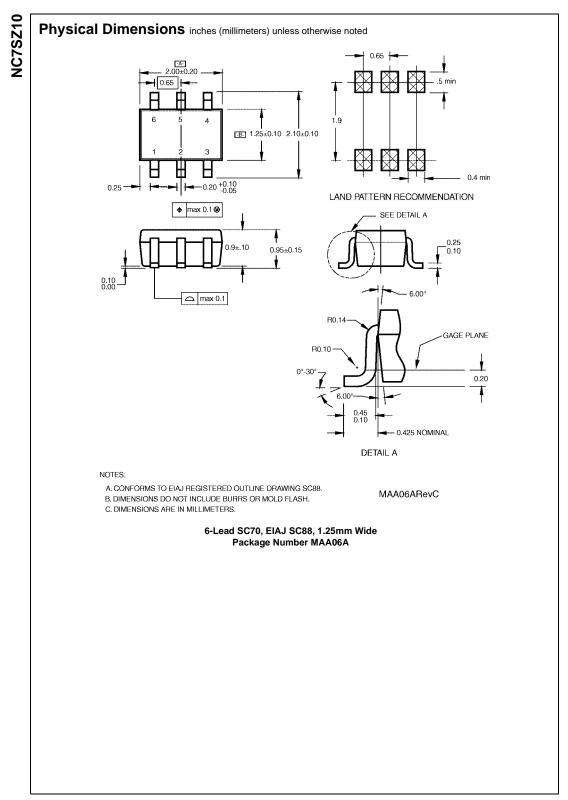
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

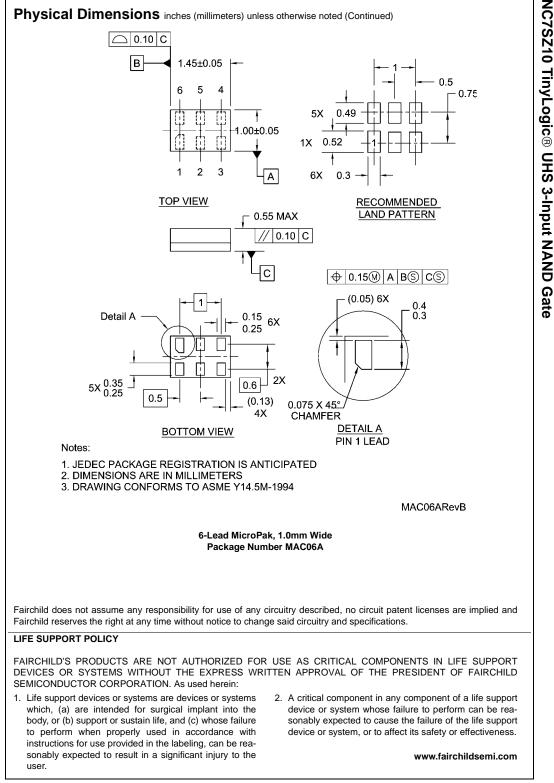
TAPE DIMENSIONS inches (millimeters)



SECTION A-A

R 1.181 MIN. [30]


BEND RADIUS NOT TO SCALE


Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-6	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
5070-0	omm	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)

www.fairchildsemi.com

5

