IGBT # SGH10N120RUF ## Short Circuit Rated IGBT ## **General Description** Fairchild's RUF series of Insulated Gate Bipolar Transistors (IGBTs) provide low conduction and switching losses as well as short circuit ruggedness. The RUF series is designed for applications such as motor control, uninterrupted power supplies (UPS) and general inverters where short circuit ruggedness is a required feature. #### **Features** - Short circuit rated 10 μ s @ T_C = 100°C, V_{GE} = 15V - High speed switching - Low saturation voltage : $V_{CE(sat)} = 2.3 \text{ V} @ I_{C} = 10 \text{A}$ - · High input impedance ## **Applications** AC & DC motor controls, general purpose inverters, robotics, and servo controls. ## Absolute Maximum Ratings T_C = 25°C unless otherwise noted | Symbol | Description | | SGH10N120RUF | Units | |-----------------------------------|---|--------------------------|--------------|-------| | V _{CES} | Collector-Emitter Voltage | | 1200 | V | | V _{GES} | Gate-Emitter Voltage | | ± 25 | V | | | Collector Current | @ T _C = 25°C | 16 | A | | I _C | Collector Current | @ T _C = 100°C | 10 | Α | | I _{CM (1)} | Pulsed Collector Current | | 30 | A | | | Short Circuit Withstand Time | @ T _C = 100°C | 10 | μs | | T _{SC}
P _D | Maximum Power Dissipation | @ $T_C = 25^{\circ}C$ | 125 | W | | | Maximum Power Dissipation | @ T _C = 100°C | 50 | W | | TJ | Operating Junction Temperature | | -55 to +150 | °C | | T _{stg} | Storage Temperature Range | | -55 to +150 | °C | | T _L | Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds | | 300 | °C | #### Notes (1) Repetitive rating : Pulse width limited by max. junction temperature ### **Thermal Characteristics** | Symbol | Parameter | Тур. | Max. | Units | |-----------------|---|------|------|-------| | $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case | | 1.0 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | | 40 | °C/W | | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Units | |---|--|--|------|------|-------|-------| | Off Chai | racteristics | | | | | | | BV _{CES} | Collector-Emitter Breakdown Voltage | $V_{GE} = 0V, I_{C} = 1mA$ | 1200 | | | V | | ΔB _{VCES} /
ΔT _J | Temperature Coefficient of Breakdown Voltage | V _{GE} = 0V, I _C = 1mA | | 0.6 | | V/°C | | I _{CES} | Collector Cut-Off Current | $V_{CE} = V_{CES}, V_{GE} = 0V$ | | | 1 | mA | | I _{GES} | G-E Leakage Current | $V_{GE} = V_{GES}, V_{CE} = 0V$ | | | ± 100 | nA | | On Char | racteristics | | | | | | | V _{GE(th)} | G-E Threshold Voltage | $I_C = 10$ mA, $V_{CE} = V_{GE}$ | 3.5 | 5.5 | 7.5 | V | | | Collector to Emitter | $I_C = 10A$, $V_{GE} = 15V$ | | 2.3 | 3.0 | V | | $V_{CE(sat)}$ | Saturation Voltage | $I_C = 16A$, $V_{GE} = 15V$ | | 2.8 | | V | | Dvnami | c Characteristics | , OL | | | | | | C _{ies} | Input Capacitance | | | 950 | | pF | | C _{oes} | Output Capacitance | $V_{CE} = 30V, V_{GE} = 0V,$ | | 75 | | pF | | C _{res} | Reverse Transfer Capacitance | f = 1MHz | | 30 | | pF | | t _{d(on)} | Turn-On Delay Time | | | 20 | | ns | | t _{d(on)} | • | | | _ | | ns | | t _r | Rise Time | | | 60 | | ns | | t _{d(off)} | Turn-Off Delay Time | $V_{CC} = 600 \text{ V}, I_{C} = 10\text{A},$ | | 60 | 110 | ns | | t _f | Fall Time | $R_G = 25\Omega$, $V_{GE} = 15V$, | | 150 | 300 | ns | | E _{on} | Turn-On Switching Loss | Inductive Load, T _C = 25°C | | 0.65 | | mJ | | E _{off} | Turn-Off Switching Loss | | | 0.65 | | mJ | | E _{ts} | Total Switching Loss | | | 1.3 | 1.85 | mJ | | t _{d(on)} | Turn-On Delay Time | | | 20 | | ns | | t _r | Rise Time | | | 70 | | ns | | t _{d(off)} | Turn-Off Delay Time | $V_{CC} = 600 \text{ V}, I_{C} = 10\text{A},$ | | 80 | 150 | ns | | t _f | Fall Time | $R_G = 25\Omega, V_{GE} = 15V,$ | | 200 | 400 | ns | | E _{on} | Turn-On Switching Loss | Inductive Load, T _C = 125°C | | 0.75 | | mJ | | E _{off} | Turn-Off Switching Loss | | | 1.00 | | mJ | | E _{ts} | Total Switching Loss | | | 1.75 | 2.54 | mJ | | T _{sc} | Short Circuit Withstand Time | V _{CC} = 600 V, V _{GE} = 15V
@ T _C = 100°C | 10 | | | μs | | Q _q | Total Gate Charge | | | 50 | 75 | nC | | Q _{qe} | Gate-Emitter Charge | $V_{CE} = 600 \text{ V}, I_{C} = 10\text{A},$ | | 6 | 9 | nC | | Q _{gc} | Gate-Collector Charge | V _{GE} = 15V | | 25 | 40 | nC | | L _e | Internal Emitter Inductance | Measured 5mm from PKG | | 14 | | nH | Common Emitter V_{GE} = 15V Fig 1. Typical Output Characteristics Fig 2. Typical Saturation Voltage Characteristics Fig 3. Saturation Voltage vs. Case Temperature at Variant Current Level Fig 4. Load Current vs. Frequency Fig 5. Saturation Voltage vs. V_{GE} Fig 6. Saturation Voltage vs. V_{GE} ©2002 Fairchild Semiconductor Corporation Common Emitter $V_{\rm CC}=600{\rm V}, V_{\rm CE}=\pm\ 15{\rm V}$ $V_{\rm CC}=600{\rm V}, V_{\rm CE}=\pm\ 15{\rm V}$ $V_{\rm CC}=10{\rm A}$ $V_{\rm CC}=125{\rm C}$ CC}$ Fig 7. Capacitance Characteristics Fig 8. Turn-On Characteristics vs. Gate Resistance Fig 9. Turn-Off Characteristics vs. Gate Resistance Fig 10. Switching Loss vs. Gate Resistance Fig 11. Turn-On Characteristics vs. Collector Current Fig 12. Turn-Off Characteristics vs. Collector Current Fig 13. Switching Loss vs. Collector Current Fig 14. Gate Charge Characteristics Fig 15. SOA Characteristics Fig 16. Turn-Off SOA Fig 17. Transient Thermal Impedance of IGBT #### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. | ACEx TM Bottomless TM CoolFET TM CROSSVOLT TM DenseTrench TM DOME TM EcoSPARK TM E ² CMOS TM Ensigna TM | FAST® FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I²C™ ISOPLANAR™ LittleFET™ | MICROWIRETM OPTOLOGICTM OPTOPLANARTM PACMANTM POPTM Power247TM PowerTrench® QFETTM QSTM | SLIENT SWITCHER® SMART STARTTM SMPTM STAR*POWERTM StealthTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM | UHC™
UltraFET [®]
VCX™ | |---|--|---|--|---------------------------------------| | EnSigna™
FACT™ | | | SyncFET™ | | | FACT Quiet Series™ | MicroFET™
MicroPak™ | QT Optoelectronics™
Quiet Series™ | TinyLogic™
TruTranslation™ | | | | | | | | STAR*POWER is used under license #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ## **PRODUCT STATUS DEFINITIONS** ### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or In
Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. | ©2002 Fairchild Semiconductor Corporation Rev. H5