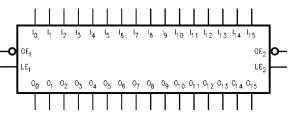
74LCXH162373 Low Voltage 16-Bit Transparent Latch with Bushold and 26 Ω Series Resistor Outputs

General Description

Features


- 5V tolerant control inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- Equivalent 26Ω series resistors on outputs
- Bushold on inputs eliminates the need for external pull-up/pull-down resistors

- 6.2 ns t_{PD} max (V_{CC} = 3.3V), 20 μA I_{CC} max
- Power down high impedance inputs and outputs
- \blacksquare ±12 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance: Human body model > 2000V
 - Machine model > 200V
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Preliminary)

Ordering Code:

FAIRCH	CTORIM	February 2001 Revised March 2002
	ge 16-Bi	t Transparent Latch 26 Ω Series Resistor Outputs
General Des The LCXH162373 c with 3-STATE output applications. The de appear transparent to is HIGH. When LE is time is latched. Data Enable (OE) is LOW a high impedance sta The LCXH162373 is 3.3V) V _{CC} application signal environment. output overshoot and The LCXH162373 is technology to achieve ing CMOS low powe The LCXH162373 d cuitry, eliminating the hold unused or floatil	ontains sixteen n its and is intender vice is byte contro- to the data when the s LOW, the data the appears on the b When \overline{OE} is HIG ate. Is designed for lo as with capability of The 26 Ω series re- d undershoot. Is fabricated with a e high speed oper- r dissipation. ata inputs include a need for externa- ing data inputs at a	ad for bus oriented rolled. The flip-flops e Latch Enable (LE) hat meets the setup us when the Output $2.3V-3.6V V_{CC}$ specifications provided $Equivalent 26\Omega$ series resistors on outputsBushold on inputs eliminates the need for external pull-up/pull-down resistors $Bushold on inputs eliminates the need for externalpull-up/pull-down resistorsBushold orfinterfacing to a 5Vseistor helps reduceBushold orLatch-up performance exceeds 500 mABushold orLatch-up performance:Human body model > 200VBushold cir-I pull-up resistors toBushold cir-I$
Order Number	Package Number	Package Description
74LCXH162373GX (Note 1)	BGA54A (Preliminary)	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide [TAPE and REEL]
74LCXH162373MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [[RAIL]
74LCXH162373MEX	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [TAPE and REEL]
74LCXH162373MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [RAIL]
74LCXH162373MTX	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [TAPE and REEL]
Note 1: BGA package ava		only.
Logic Symbo		II I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 UE2 LE2

Logic Symbol

Connection D	Diagrams	
Pin Assignn	nent for SSOP a	nd TSSOP
00 00 01	1 48 2 47 3 46	— LE ₁ — I ₀ — I ₁
01 GND — 0 ₂ — 0 ₃ —	4 45 5 44 6 43	
v _{cc} — o ₄ — o ₅ —	7 42 8 41 9 40	– v _{cc} – ' ₄ – ' ₅
gnd — 0 ₅ — 0 ₇ — 0 ₈ —	10 39 11 38 12 37 13 36	— GND — I ₆ — I ₇ — I ₈
0 ₉ — gnd — 0 ₁₀ —	14 35 15 34 16 33	— I ₉ — GND — I ₁₀
0 ₁₁	17 32 18 31 19 30 20 29	— I ₁₁ — V _{CC} — I ₁₂ — I ₁₃
GND	21 28 22 27 23 26	— GND — I ₁₄ — I ₁₅
ਹĒ₂ — Pin As	24 25 signment for F	
ЈН G F E D C B A	$\begin{array}{c}1&2&3&4&5\\0&0&0&0&0\\0&0&0&0&0\\0&0&0&0&0\\0&0&0&0&$	¢ 000000000
(Top Thru View)	

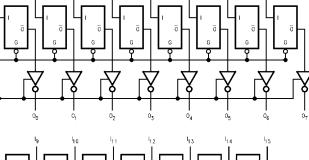
Pin Descriptions

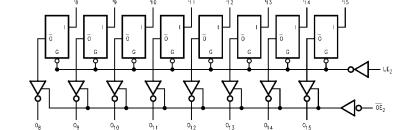
Pin Names	Description
OE n	Output Enable Input (Active LOW)
LEn	Latch Enable Input
I ₀ —I ₁₅	Inputs (Bushold)
O ₀ -O ₁₅	Outputs (Bushold)
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₀	NC	OE ₁	LE ₁	NC	I ₀
В	0 ₂	0 ₁	NC	NC	I ₁	l ₂
С	O ₄	O ₃	V _{CC}	V _{CC}	I ₃	I ₄
D	O ₆	O ₅	GND	GND	I ₅	I ₆
E	0 ₈	0 ₇	GND	GND	۱ ₇	I ₈
F	O ₁₀	O ₉	GND	GND	l ₉	I ₁₀
G	O ₁₂	O ₁₁	V _{CC}	V _{CC}	I ₁₁	I ₁₂
н	0 ₁₄	0 ₁₃	NC	NC	I ₁₃	I ₁₄
J	O ₁₅	NC	OE ₂	LE_2	NC	I ₁₅

Truth Tables


	Inputs		Outputs
LE ₁	OE ₁	I ₀ —I ₇	0 ₀ –0 ₇
Х	Н	Х	Z
н	L	L	L
н	L	Н	н
L	L	Х	O ₀
Inputs			Outputs
LE ₂	0E2	I ₈ —I ₁₅	0 ₈ –0 ₁₅
Х	Н	Х	Z
Н	L	L	L
н	L	н	н
		х	O ₀


Functional Description

The LCXH162373 contains sixteen D-type latches with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the I_n enters the latches. In this condition the latches are transparent, i.e. a latch output will change state each time

its I input changes. When LE_n is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition of LE_n. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW, the standard outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagrams

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 2)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage I ₀ - I ₁₅	-0.5 to $V_{CC} + 0.5$		V
	OE _n , LE _n	-0.5V to 7.0V		v
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to $V_{CC} + 0.5$	Output in HIGH or LOW State (Note 3)	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
l _o	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 4)

Symbol	Parameter	Min	Max	Units	
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	V _{CC}	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±12	
		$V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±8	mA
		$V_{CC}=2.3V-2.7V$		±4	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_{O} Absolute Maximum Rating must be observed.

Note 4: Floating or unused control inputs must be HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Symbol	Farameter	conditions	(V)	Min	Max	onits
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 - 3.6	2.0		V
VIL	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 - 3.6		0.8	v
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	2.3	1.8		
		$I_{OH} = -4 \text{ mA}$	2.7	2.2		V
		$I_{OH} = -6 \text{ mA}$	3.0	2.4		
		$I_{OH} = -8 \text{ mA}$	2.7	2.0		
		$I_{OH} = -12 \text{ mA}$	3.0	2.0		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 4 mA	2.3		0.6	
		$I_{OL} = 4 \text{ mA}$	2.7		0.4	v
		I _{OL} = 6 mA	3.0		0.55	v
		I _{OL} = 8 mA	2.7		0.6	
		I _{OL} = 12 mA	3.0		0.8	
կ	Input Leakage Current	$V_I = V_{CC}$ or GND	2.3 - 3.6	1	±5.0	μΑ

Symbol	Parameter	Conditions	V _{cc}	T _A = -40°	C to +85°C	Units
Symbol	Faraneter	conditions	(V)	Min	Max	onits
I _{I(HOLD)}	Bushold Input Minimum	$V_{IN} = 0.7V$	2.3	45		
	Drive Hold Current	V _{IN} = 1.7V	3.0	-45		μA
		$V_{IN} = 0.8V$		75		
		$V_{IN} = 2.0V$	3.0	-75		
I _{I(OD)}	Bushold Input Over-Drive	(Note 6)	2.7	300		
	Current to Change State	(Note 7)	2.1	-300		
		(Note 6)	3.6	450		μA
		(Note 7)	5.0	-450		
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	
		$V_I = V_{IH}$ or V_{IL}	2.3 - 3.0		±3.0	μA
I _{OFF}	Power-Off Leakage Current	V _O = V _{CC}	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		20	
		$3.6V \le V_O \le 5.5V$ (Note 5)	2.3 - 3.6		±20	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μA

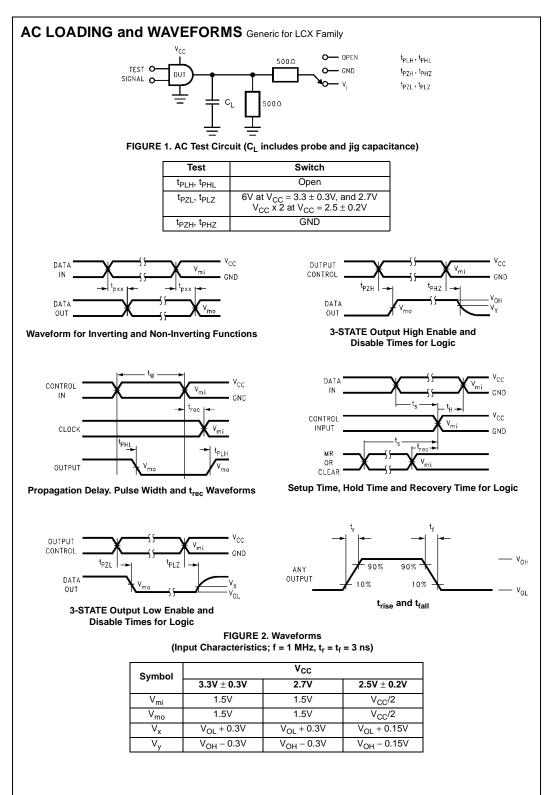
Note 5: Outputs disabled or 3-STATE only.

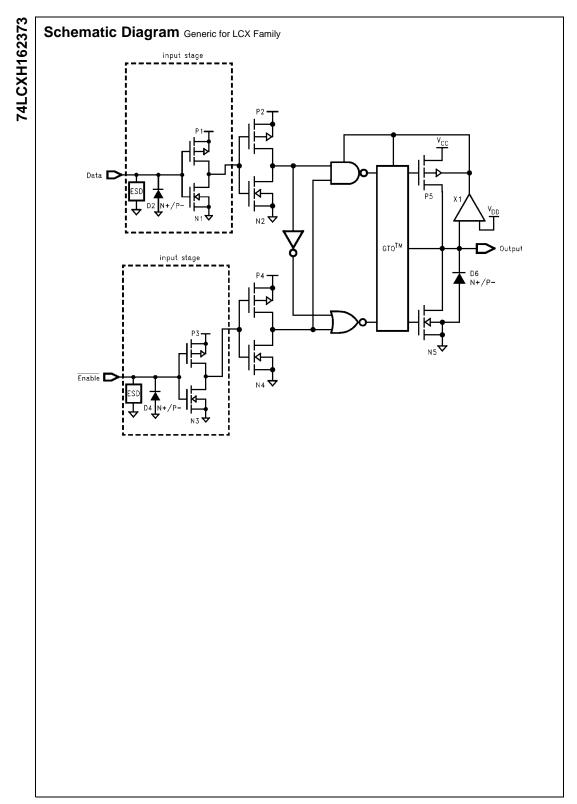
Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

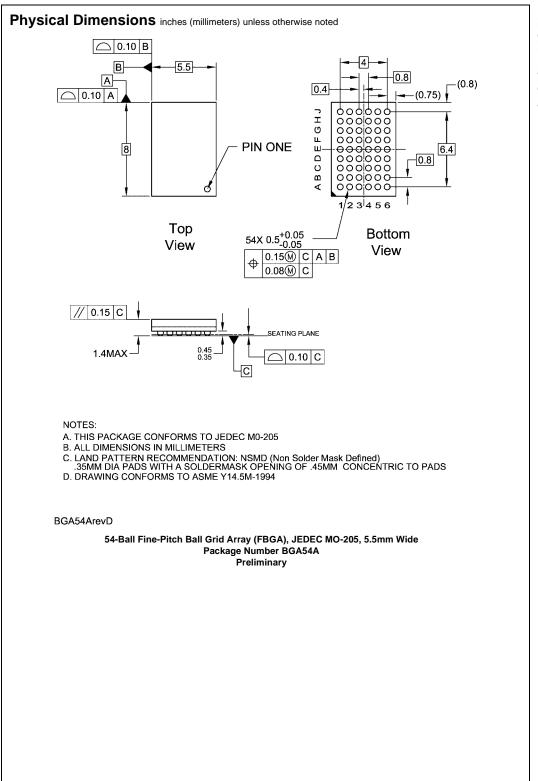
Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

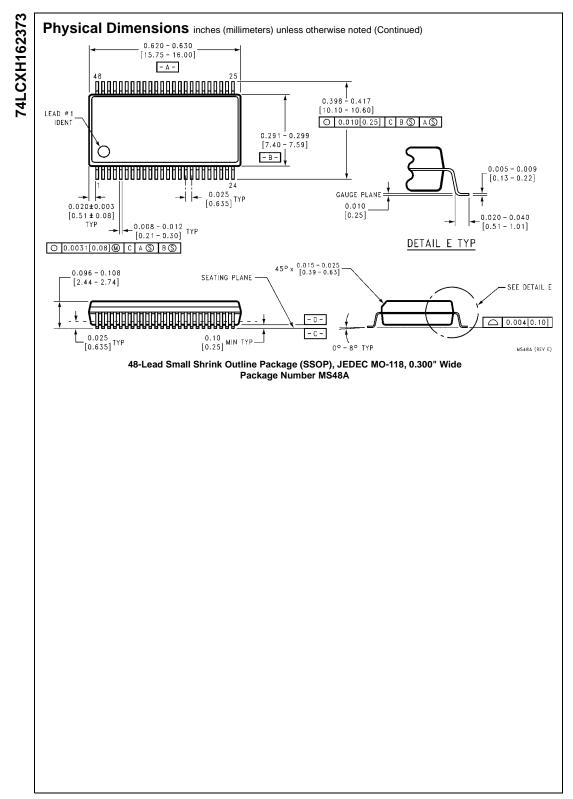
AC Electrical Characteristics

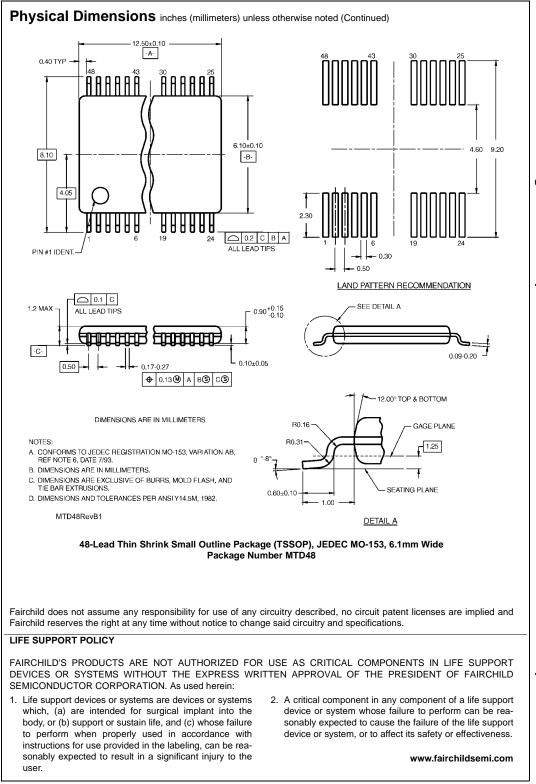
			$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$						
Symbol	Parameter	$V_{CC}=3.3V\pm0.3V$		V _{CC} :	V _{CC} = 2.7V C _L = 50 pF		$5V \pm 0.2V$	Units	
	Farameter	C _L =	C _L = 50 pF				30 pF	Units	
		Min	Max	Min	Max	Min	Max		
t _{PHL}	Propagation Delay	1.5	6.2	1.5	6.7	1.5	7.4	ns	
t _{PLH}	I _n to O _n	1.5	6.2	1.5	6.7	1.5	7.4	ns	
t _{PHL}	Propagation Delay	1.5	6.3	1.5	7.2	1.5	7.6	ns	
t _{PLH}	LE to O _n	1.5	6.3	1.5	7.2	1.5	7.6	115	
t _{PZL}	Output Enable Time	1.5	6.9	1.5	7.3	1.5	9.0	ne	
t _{PZH}		1.5	6.9	1.5	7.3	1.5	9.0	ns	
t _{PLZ}	Output Disable Time	1.5	6.0	1.5	6.3	1.5	7.2	20	
t _{PHZ}		1.5	6.0	1.5	6.3	1.5	7.2	ns	
ts	Setup Time, In to LE	2.5		2.5		3.0		ns	
t _H	Hold Time, I _n to LE	1.5		1.5		2.0		ns	
t _W	LE Pulse Width	3.0		3.0		3.5		ns	
toshl	Output to Output Skew (Note 8)		1.0						
t _{OSLH}			1.0					ns	


Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{CC} (V)	T _A = 25°C Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$ $C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.35	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.25	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.35	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.25	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10 MHz	20	pF

