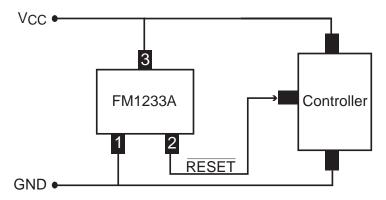


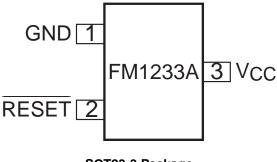
## FM1233A 3-Pin μC Supervisor Circuit

#### **General Description**

The FM1233A is a supervisor circuit that monitors a microprocessor power supply or other system voltage and issues a reset pulse when a fault condition exists. Several different threshold voltages are offered to accommodate 3V systems with different tolerances.


The device features a precision temperature-compensated voltage reference and comparator. When  $V_{CC}$  falls to the threshold voltage, a RESET pulse is issued, holding the output in the active state. When power rises above  $V_{TH}$ , the reset remains for approximately 250 ms to allow the system clock and other circuits to stabilize. The reset output of FM1233A is of open-drain active low type.

The FM1233A also can monitor a switch closure on its output, enabling it to recognize an external reset from a pushbutton switch or a  $\mu P$ . In the case of a switch, the closure will be debounced by circuitry internal to the FM1233A.


#### **Features**

- Precision monitoring of 3.3V and lower voltage microprocessor systems
- V<sub>TH</sub> values of 2.88V, 2.72V
- Automatic restart of microprocessor after power failure
- 140ms (min) power-on RESET delay (typ.: 256ms)
- Internal 5kΩ pull-up resistor
- Other reset choices available: 32 to 128ms
- Operating Temperature -40°C to +105°C
- Monitors external pushbutton override
- Internal switch debounce circuitry
- SOT23-3 package

#### **Typical Operating Circuit**



#### **Connection Diagram**

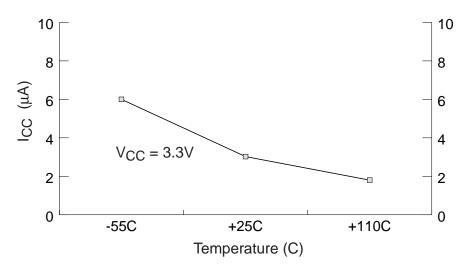


#### **Absolute Maximum Ratings**

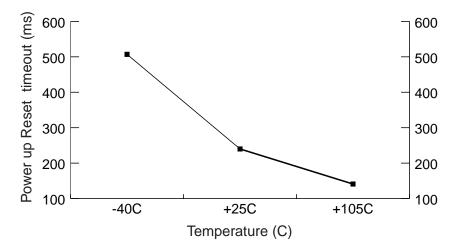
Voltage on any pin relative to GND Continuous Power Dissipation  $(T_A = 70^{\circ}C)$ -0.3V to +6.0V SOT23 (derate 4mW above 70°C) 300mW  $V_{CC}$ RESET -0.3V to  $(V_{CC} + 0.3V)$ Operating Temperature Range -40°C to +105°C 20mA -65°C to +150°C Input Current Storage Temperature Range Output Current (RESET) +300°C 20mA Lead Temperature (soldering, 10s)

These are stress ratings only, and functional operation is not implied for these levels or beyond. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

# Electrical Characteristics ( $V_{CC} = 3.3V$ ; $T_A = -40^{\circ}C$ to +105°C unless otherwise noted) (Note 1)


| Parameter            | Symbol             | Conditions             |                                            | Min  | Тур  | Max  | Units |
|----------------------|--------------------|------------------------|--------------------------------------------|------|------|------|-------|
| Operating Voltage    | V <sub>CC</sub>    |                        |                                            | 1.2  | 3.3  | 5.5  | V     |
| Supply Current       | I <sub>CC</sub>    | V <sub>CC</sub> < 3.3V |                                            |      | 3    | 6    | μΑ    |
| Reset Threshold      | V <sub>TH</sub>    | FM1233AC               |                                            | 2.70 | 2.88 | 2.97 | V     |
| Reset Threshold      | V <sub>TH</sub>    | FM1233AD               |                                            | 2.58 | 2.72 | 2.86 | V     |
| Reset Output Voltage | V <sub>OL</sub>    | FM1233A                | $I_{SINK} = 5mA$<br>$V_{CC} = V_{TH}(min)$ |      |      | 0.4  | V     |
| Reset Timeout Period | t <sub>RST</sub>   | FM1233A                |                                            | 140  | 256  | 560  | ms    |
| Pushbutton Detect    | PBV <sub>DET</sub> | FM1233A                | V <sub>CC</sub> = 3.3V                     | 0.8  |      | 2.0  | V     |
| Pushbutton Release   | PBV <sub>REL</sub> | FM1233A                | Note 2                                     |      | 0.3  | 1.5  | V     |

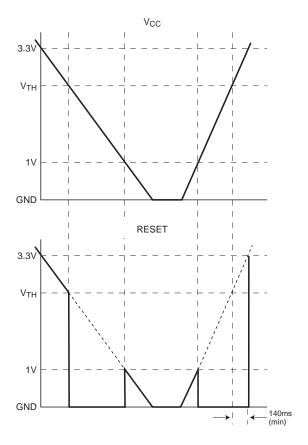
Note 1: Testing at production is done at 25°C only. Limits over temperature are guaranteed by design.


Note 2: C = 100pF, V<sub>CC</sub> = 3.3V. It is recommended to connect 100pF capacitor between the Reset pin and Ground pin if pushbutton reset is implemented.

## **Typical Operating Characteristics**

## **Supply Current Vs. Temperature**




#### Power up Reset Timeout Vs. Temperature



#### **Pin Descriptions**

| Pin Number | Name            | Function                                                                                                          |
|------------|-----------------|-------------------------------------------------------------------------------------------------------------------|
| 1          | GND             | GROUND                                                                                                            |
| 2          | RESET           | RESET remains LOW while $V_{CC}$ is below $V_{TH}$ , and for at least 140ms after $V_{CC}$ rises above $V_{TH}$ . |
| 3          | V <sub>CC</sub> |                                                                                                                   |

## Circuit Timing (Ex: FM1233A)

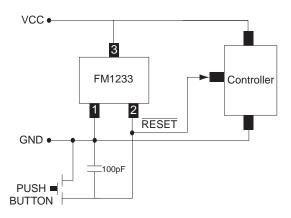


When operating properly with 3V  $V_{CC}$  (for example),  $\overline{RESET}$  will also be about 3V. When  $V_{CC}$  starts to fall,  $\overline{RESET}$  will follow it down as shown. When  $V_{CC}$  drops below  $V_{TH}$ ,  $\overline{RESET}$  drops to ground ("issues a RESET") and stays there unless  $V_{CC}$  also falls below its minimum operating voltage, approx. 1V. At this point, the supervisor loses control, and its output may rise, only to again follow  $V_{CC}$  down to the ground.

When  $V_{CC}$  begins to rise, RESET follows it until 1.0V or so is reached, whereupon the device regains control, RESET is pulled to ground, etc. When  $V_{CC}$  rises above  $V_{TH}$ , RESET comes out of RESET 140 ms later.

If it is required that a lower value than GND  $\,$  + 1.0V is needed on RESET signal during V  $_{CC} \leq$  1V, a 100K resistor may be used on the device output to GND.

#### **General Description**


The FM1233A features a highly accurate voltage reference to which  $V_{CC}$  is compared. Once  $V_{CC}$  is below the specified threshold, it will drive the  $\overline{RESET}$  line and continue to hold it low until  $V_{CC}$  returns above the threshold and the time for the RESET pulse duration has expired. The FM1233A is immune to short negative going transients on the  $V_{CC}$  line. The placement of a 0.1µF bypass capacitor as close as possible to the  $V_{CC}$  pin provides additional transient immunity.

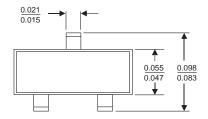
For a V $_{CC}$  value below 1.0V, the FM1233A does not sink very much current on the RESET pin. This is not a problem in most systems since common devices are not functional in this range. If it is desired for the FM1233A reset to be functional below this range, use a 100K $\Omega$  pull-down resistor between RESET and V $_{SS}$ .

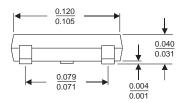
#### **Bi-Directional Reset**

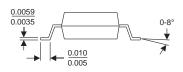
The FM1233A permits an external pushbutton to initiate a reset. Such a connection to pin 2 will be debounced,  $\overline{\text{RESET}}$  will go low and recover in typically 250ms. For proper operation, the external switch should be paralleled by an external capacitor of 100pF to  $0.01\mu F$ .

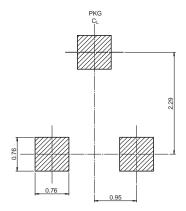
#### Connecting an External Reset to the FM1233A




5 www.fairchildsemi.com


## **Ordering Information**


| Part<br>Number | Top<br>Marking | RESET<br>Threshold (V) | Output<br>Type         | Package<br>Type | Packing<br>Method |  |
|----------------|----------------|------------------------|------------------------|-----------------|-------------------|--|
| FM1233ACS3X    | 3AC            | 2.88                   | Open-Drain, active LOW | 3-Pin, SOT23    | 3000 units in T&R |  |
| FM1233ADS3X    | 3AD            | 2.72                   | Open-Drain, active LOW | 3-Pin, SOT23    | 3000 units in T&R |  |


Note 3: Devices listed above feature 250ms typical reset pulse width. Consult Fairchild Sales for other reset pulse width options.

### Physical Dimensions inches (millimeters) unless otherwise noted









LAND PATTERN RECOMMENDATION

#### **SOT-23 Package Dimensions** FS Pkg Code AU

#### **Life Support Policy**

Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Fairchild Semiconductor Corporation. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor

Customer Response Center Tel. 1-888-522-5372

Fairchild Semiconductor Europe +44 (0) 1793-856858 Fax: Tel: Tel: +49 (0) 8141-6102-0 +44 (0) 1793-856856 Deutsch English Français Italiano +33 (0) 1-6930-3696 +39 (0) 2-249111-1 Tel:

Fairchild Semiconductor Hong Kong 8/F, Room 808, Empire Centre

68 Mody Road, Tsimshatsui East Kowloon. Hong Kong Tel; +852-2722-8338 Fax: +852-2722-8383

Fairchild Semiconductor Japan Ltd. 4F, Natsume Bldg.

2-18-6, Yushima, Bunkyo-ku Tokyo, 113-0034 Japan Tel: 81-3-3818-8840 Fax: 81-3-3818-8841