## Small Signal Diodes



Dimensions in inches and (millimeters)

## Marking

JD


## FEATURES

- Silicon Epitaxial Planar Diodes
- Fast switching dual diode with common anode.
- This diode is also available in other configurations including: a single diode with type designation BAL99, a dual anode to cathode with type designation BAV99, and a dual common cathode with type designation BAV70.


## MECHANICAL DATA

Case: SOT-23 Plastic Package Weight: approx. 0.008 g

## MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings for a single diode at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified.

|  | Symbol | Value | Unit |
| :--- | :--- | :--- | :--- |
| Reverse Voltage, Peak Reverse Voltage | $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{RM}}$ | 70 | V |
| Forward Current (continuous) | $\mathrm{I}_{\mathrm{F}}$ | 250 | mA |
| Non-Repetitive Peak Forward Current <br> at $\mathrm{t}=1 \mathrm{~ms}$ <br> at $\mathrm{t}=1 \mathrm{~ms}$ <br> at $t=1 \mathrm{~s}$ |  |  |  |
| Power Dissipation at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ | $\mathrm{I}_{\mathrm{FSM}}$ | 2 | A |
| Junction Temperature | $\mathrm{I}_{\mathrm{FSM}}$ | 1 | A |
| Storage Temperature Range | $\mathrm{P}_{\text {tot }}$ | 3.5 | A |
| 1) Device on fiberglass substrate, see layout | $\mathrm{T}_{\mathrm{j}}$ | mW |  |

## BAW56

## ELECTRICAL CHARACTERISTICS

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified

|  | Symbol | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Forward Voltage at $\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$ <br> at $I_{F}=10 \mathrm{~mA}$ <br> at $\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$ <br> at $I_{F}=150 \mathrm{~mA}$ | $\begin{aligned} & V_{F} \\ & V_{F} \\ & V_{F} \\ & V_{F} \end{aligned}$ | - | - | 0.715 0.855 1.0 1.25 | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |
| Leakage Current at $\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}$ <br> at $\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ <br> at $\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ | $\begin{aligned} & I_{R} \\ & I_{R} \\ & I_{R} \end{aligned}$ | $\begin{aligned} & - \\ & \text { - } \end{aligned}$ | $\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 100 \\ & 30 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$ |
| Capacitance $\text { at } \mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{R}}=0, \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{C}_{\text {tot }}$ | - | - | 2 | pF |
| Reverse Recovery Time from $I_{F}=10 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}$ measured at $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ | $t_{\text {rr }}$ | - | - | 6 | ns |
| Thermal Resistance Junction to Ambient Air | $\mathrm{R}_{\text {thJA }}$ | - | - | 4301) | K/W |
| ${ }^{1)}$ Device on fiberglass substrate, see layout |  |  |  |  |  |



Layout for $\mathrm{R}_{\text {thJ }}$ A test
Thickness: Fiberglass 0.059 in ( 1.5 mm ) Copper leads 0.012 in ( 0.3 mm )

