BC546 THRU BC549

Small Signal Transistors (NPN)

Dimensions in inches and (millimeters)

- NPN Silicon Epitaxial Planar Transistors
- These transistors are subdivided into three groups A, B and C according to their current gain. The type BC546 is available in groups A and B, however, the types BC547 and BC548 can be supplied in all three groups. The BC549 is a low-noise type and available in groups B and C. As complementary types, the PNP transistors BC556 ... BC559 are recommended.
- On special request, these transistors are also manufactured in the pin configuration TO-18.

MECHANICAL DATA

Case: TO-92 Plastic Package
Weight: approx. 0.18 g

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified

		Symbol	Value	Unit
Collector-Base Voltage	$\begin{array}{r} \text { BC546 } \\ \text { BC547 } \\ \text { BC548, } \mathbf{B C 5 4 9} \end{array}$	$V_{\text {CBO }}$ $\mathrm{V}_{\mathrm{CBO}}$ V_{CBO}	$\begin{aligned} & 80 \\ & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Collector-Emitter Voltage	$\begin{array}{r} \text { BC546 } \\ \text { BC547 } \\ \text { BC548, } \mathbf{B C 5 4 9} \end{array}$	$V_{\text {CES }}$ $V_{\text {CES }}$ $\mathrm{V}_{\text {CES }}$	$\begin{aligned} & 80 \\ & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Collector-Emitter Voltage	$\begin{array}{r} \text { BC546 } \\ \text { BC547 } \\ \text { BC548, } \end{array}$	$V_{\text {CEO }}$ $V_{\text {CEO }}$ $V_{\text {CEO }}$	$\begin{aligned} & 65 \\ & 45 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Emitter-Base Voltage	BC546, BC547 BC548, BC549	$\begin{aligned} & \mathrm{V}_{\text {EBO }} \\ & \mathrm{V}_{\mathrm{EBO}} \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Collector Current		I_{C}	100	mA
Peak Collector Current		I_{CM}	200	mA
Peak Base Current		IBM	200	mA
Peak Emitter Current		$-_{\text {EM }}$	200	mA
Power Dissipation at $\mathrm{Tamb}=25^{\circ} \mathrm{C}$		$P_{\text {tot }}$	5001)	mW
Junction Temperature		T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		T_{S}	-65 to +150	${ }^{\circ} \mathrm{C}$
${ }^{\text {1) }}$ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case				

BC546 THRU BC549

ELECTRICAL CHARACTERISTICS

	Symbol	Min.	Typ.	Max.	Unit
	$\begin{aligned} & \mathrm{h}_{\mathrm{fe}} \\ & \mathrm{~h}_{\mathrm{f}} \\ & \mathrm{~h}_{\mathrm{fe}} \\ & \mathrm{~h}_{\mathrm{ie}} \\ & \mathrm{~h}_{\mathrm{i}} \\ & \mathrm{~h}_{\mathrm{ie}} \\ & \mathrm{~h}_{\mathrm{oe}} \\ & \mathrm{~h}_{\mathrm{oe}} \\ & \mathrm{~h}_{\mathrm{oe}} \\ & \mathrm{~h}_{\mathrm{re}} \\ & \mathrm{~h}_{\mathrm{re}} \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & -1.6 \\ & 3.2 \\ & 6 \\ & - \\ & - \\ & - \\ & - \end{aligned}$	220 330 600 2.7 4.5 8.7 18 30 60 $1.5 \cdot 10^{-4}$ $2 \cdot 10^{-4}$ $3 \cdot 10^{-4}$	- - - 4.5 8.5 15 30 60 110 - - -	$\begin{aligned} & - \\ & - \\ & - \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$
DC Current Gain at $V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}$ Current Gain Group A at $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$ Current Gain Group A at $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$ Current Gain Group A $\begin{aligned} & \mathbf{B} \\ & \mathbf{C} \end{aligned}$	$h_{\text {FE }}$ $h_{\text {FE }}$	$\begin{aligned} & - \\ & - \\ & - \\ & 110 \\ & 200 \\ & 420 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 90 \\ & 150 \\ & 270 \\ & 180 \\ & 290 \\ & 500 \\ & 120 \\ & 200 \\ & 400 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & 220 \\ & 450 \\ & 800 \\ & - \\ & - \end{aligned}$	-
Thermal Resistance Junction to Ambient Air	$\mathrm{R}_{\text {thJA }}$	-	-	2501)	K/W
Collector Saturation Voltage at $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}$ at $\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$	$V_{\text {CEsat }}$ $V_{\text {CEsat }}$	-	$\begin{aligned} & 80 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 600 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Base Saturation Voltage at $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~mA}$ at $\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$	$V_{\text {BEsat }}$ $V_{\text {BEsat }}$	-	$\begin{aligned} & 700 \\ & 900 \end{aligned}$	-	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Base-Emitter Voltage at $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{BE}} \\ & \mathrm{~V}_{\mathrm{BE}} \end{aligned}$	580 -	660	$\begin{aligned} & 700 \\ & 720 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Ices ICes ICES Ices ICES		$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 4 \\ & 4 \end{aligned}$	nA nA $\mu \mathrm{A}$ $\mu \mathrm{A}$

BC546 THRU BC549

ELECTRICAL CHARACTERISTICS
Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified

	Symbol	Min.	Typ.	Max.	Unit
at $\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \quad$ BC548, BC549	ICES	-	-	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Gain-Bandwidth Product at $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$	f_{\top}	-	300	-	MHz
Collector-Base Capacitance at $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {CBO }}$	-	3.5	6	pF
Emitter-Base Capacitance at $\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {EBO }}$	-	9	-	pF
	F F F	-	$\begin{aligned} & 2 \\ & 1.2 \\ & 1.4 \end{aligned}$	10 4 4	dB dB dB

RATINGS AND CHARACTERISTIC CURVES BC546 THRU BC549

GENERAL
SEMICONDUCTOR ${ }^{\circ}$

RATINGS AND CHARACTERISTIC CURVES BC546 THRU BC549

DC current gain
 versus collector current

BC546...BC549

Collector current versus base-emitter voltage

Collector-base cutoff current versus ambient temperature

Collector saturation voltage versus collector current

RATINGS AND CHARACTERISTIC CURVES BC546 THRU BC549

Collector-base capacitance,
Emitter-base capacitance versus reverse bias voltage

Gain-bandwidth product

 versus collector current

Relative h-parameters versus collector current

Noise figure
versus collector current

RATINGS AND CHARACTERISTIC CURVES BC546 THRU BC549

Noise figure

versus collector current

Noise figure
versus collector emitter voltage

