BS208

DMOS Transistors (P-Channel)

FEATURES

- High breakdown voltage
- High input impedance
- Low gate threshold voltage
- Low drain-source ON resistance
- ♦ High-speed switching
- No minority carrier storage time
- CMOS logic compatible input
- No thermal runaway
- No secondary breakdown
- Specially suited for telephone subsets

MECHANICAL DATA

Case: TO-92 Plastic Package **Weight:** approx. 0.18 g On special request, this transistor is also manufactured in the pin configuration TO-18.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

Dimensions in inches and (millimeters)

Symbol	Value	Unit	
-V _{DSS}	240	V	
-V _{DGS}	240	V	
V _{GS}	± 20	V	
-I _D	200	mA	
P _{tot}	0.83 ¹⁾	W	
Tj	150	°C	
T _S	-65 to +150	°C	
	-V _{DSS} -V _{DGS} V _{GS} -I _D P _{tot} T _j	$-V_{DSS}$ 240 $-V_{DGS}$ 240 V_{GS} ± 20 $-I_D$ 200 P_{tot} 0.83 ¹⁾ T_j 150	

Inverse Diode

	Symbol	Value	Unit
Max. Forward Current (continuous) at T _{amb} = 25 °C	lF	0.75	A
Forward Voltage Drop (typ.) at $V_{GS} = 0$, $I_F = 0.75$ A, $T_j = 25$ °C	V _F	0.85	V

BS208

ELECTRICAL CHARACTERISTICS

	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage at $-I_D = 100 \ \mu$ A, V _{GS} = 0	-V _{(BR)DSS}	240	250	-	V
Gate-Body Leakage Current at $-V_{GS} = 15 \text{ V}, V_{DS} = 0$	-I _{GSS}	-	-	10	nA
Drain Cutoff Current at $-V_{DS} = 130 \text{ V}, V_{GS} = 0$ at $-V_{DS} = 70 \text{ V}, -V_{GS} = 0.2 \text{ V}$	-I _{DSS} -I _{DSX}			1 25	μΑ μΑ
Gate-Source Threshold Voltage at $V_{GS} = V_{DS}$, $-I_D = 1 \text{ mA}$	-V _{GS(th)}	0.8	1.5	2.5	V
Drain-Source ON Resistance at $-V_{GS} = 5 \text{ V}, -I_D = 100 \text{ mA}$	R _{DS(ON)}	-	7	14	Ω
Thermal Resistance Junction to Ambient Air	R _{thJA}	-	-	150 ¹⁾	K/W
Capacitances at –V _{DS} = 20 V, V _{GS} = 0, f = 1 MHz Input Capacitance Output Capacitance Feedback Capacitance	C _{iss} C _{oss} C _{rss}	_ _ _	200 30 10		pF pF pF
Switching Times at –I _D = 200 mA, –U _{GS} = 10 V Turn-on Time Fall Time	t _{on} t _f		5 15		ns ns
¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.					

RATINGS AND CHARACTERISTIC CURVES BS208

Admissible power dissipation versus temperature Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

Saturation characteristics Pulse test width 80 ms; pulse duty factor 1%

BS208 Α 2.0 $T_A = 25$ C -*V_{GS}* = 9 V 1.6 8 -I_{D(ON)} 7 1.2 6 0.8 5 0.4 4 3.5 3 0 0 20 40 60 80 100 V ►-V_{DS}

Output characteristics Pulse test width 80 ms; pulse duty factor 1%

Drain-source current versus gate threshold voltage

GENERAL **SEMICONDUCTOR**[®]

RATINGS AND CHARACTERISTIC CURVES BS208

Drain current versus gate-source voltage Pulse test width 80 ms; pulse duty factor 1%

Normalized drain-source current versus temperature

Normalized gate-source voltage versus temperature

Normalized drain-source resistance versus temperature

GENERAL SEMICONDUCTOR[®]

RATINGS AND CHARACTERISTIC CURVES BS208

Drain-source resistance versus gate-source voltage

Transconductance versus drain current

Pulse test width 80 ms; pulse duty factor 1%

Transconductance versus gate-source voltage Pulse test width 80 ms; pulse duty factor 1%

Capacitance versus drain-source voltage

GENERAL SEMICONDUCTOR[®]