DMOS Transistors (P-Channel)

Dimensions in inches and (millimeters)

FEATURES

- High breakdown voltage
- High input impedance
- Low gate threshold voltage
- Low drain-source ON resistance
- High-speed switching
- No minority carrier storage time
- CMOS logic compatible input
- No thermal runaway
- No secondary breakdown
- Specially suited for telephone subsets

MECHANICAL DATA
Case: TO-92 Plastic Package
Weight: approx. 0.18 g
On special request, this transistor is also manu-
factured in the pin configuration TO-18.

MECHANICAL DATA

Case: TO-92 Plastic Package
Weight: approx. 0.18 g factured in the pin configuration TO-18.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified

	Symbol	Value	Unit
Drain-Source Voltage	$-\mathrm{V}_{\text {DSS }}$	240	V
Drain-Gate Voltage	$-\mathrm{V}_{\text {DGS }}$	240	V
Gate-Source Voltage (pulsed)	V_{GS}	± 20	V
Drain Current (continuous)	$-\mathrm{I}_{\mathrm{D}}$	200	mA
Power Dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	$0.83^{1)}$	W
Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{S}	-65 to +150	${ }^{\circ} \mathrm{C}$
${ }^{\text {1) }}$ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.			

Inverse Diode

	Symbol	Value	Unit
Max. Forward Current (continuous) at $T_{\text {amb }}=25^{\circ} \mathrm{C}$	I_{F}	0.75	A
Forward Voltage Drop (typ.) at $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{F}}=0.75 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	V_{F}	0.85	V

ELECTRICAL CHARACTERISTICS

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified

	Symbol	Min.	Typ.	Max.	Unit
Drain-Source Breakdown Voltage at $-I_{D}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	- $\mathrm{V}_{\text {(BR) }{ }^{\text {DSS }}}$	240	250	-	V
Gate-Body Leakage Current at $-V_{G S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	- IGSS	-	-	10	nA
Drain Cutoff Current at $-\mathrm{V}_{\mathrm{DS}}=130 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ at $-\mathrm{V}_{\mathrm{DS}}=70 \mathrm{~V},-\mathrm{V}_{\mathrm{GS}}=0.2 \mathrm{~V}$	$\begin{aligned} & \text {-IDSS } \\ & \text {-IDSX } \end{aligned}$	-	-	$\begin{aligned} & 1 \\ & 25 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Gate-Source Threshold Voltage at $V_{G S}=V_{D S}, I_{D}=1 \mathrm{~mA}$	$-\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	0.8	1.5	2.5	V
Drain-Source ON Resistance at $-\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V},-\mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	-	7	14	Ω
Thermal Resistance Junction to Ambient Air	$\mathrm{R}_{\text {thJA }}$	-	-	1501)	KW
Capacitances at $-V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$ Input Capacitance Output Capacitance Feedback Capacitance	$\mathrm{C}_{\text {iss }}$ Coss Crss	-	$\begin{aligned} & 200 \\ & 30 \\ & 10 \end{aligned}$	-	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Switching Times at $-\mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA},-\mathrm{U}_{\mathrm{GS}}=10 \mathrm{~V}$ Turn-on Time Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{on}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	-	$\begin{aligned} & 5 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
${ }^{\text {1) }}$ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.					

Saturation characteristics
Pulse test width 80 ms ; pulse duty factor 1%

Output characteristics
Pulse test width 80 ms ; pulse duty factor $\mathbf{1 \%}$

Drain-source current versus gate threshold voltage

Drain current
versus gate-source voltage
Pulse test width 80 ms ; pulse duty factor 1%

Normalized drain-source current versus temperature

Normalized gate-source voltage versus temperature

Normalized drain-source resistance versus temperature

Drain-source resistance versus gate-source voltage

Transconductance versus drain current
Pulse test width 80 ms ; pulse duty factor 1%

Transconductance versus gate-source voltage
Pulse test width 80 ms ; pulse duty factor 1%

Capacitance
versus drain-source voltage

