GI1001 THRU GI1004

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Reverse Voltage - 50 to 200 Volts

Forward Current - 1.0 Ampere

FEATURES

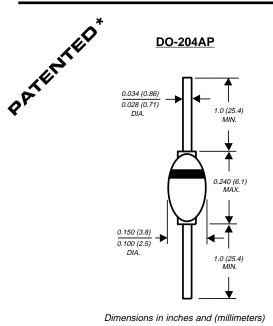
- High temperature metallurgically bonded construction
- Glass passivated cavity-free junction
- Superfast recovery time for high efficiency
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed package
- Low leakage current
- High surge capability
- High temperature soldering guaranteed: 350°C/10 seconds, 0.375" (9.5mm) lead length, 5 lbs. (2.3kg) tension

MECHANICAL DATA

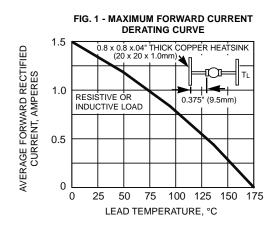
Case: JEDEC DO-204AP solid glass body Terminals: Plated axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode end Mounting Position: Any Weight: 0.02 ounce, 0.56 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.


* Brazed lead assembly is covered by Patent No. 3,930,30

	SYMBOLS	GI1001	GI1002	GI1003	GI1004	UNITS
Maximum repetitive peak reverse voltage	Vrrm	50	100	150	200	Volts
Maximum RMS voltage	Vrms	35	70	105	140	Volts
Maximum DC blocking voltage	VDC	50	100	150	200	Volts
Maximum average forward rectified current $0.375"$ (9.5mm) lead length at TL=75°C	l(AV)	1.0				Amp
Peak forward surge current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at TL=75°C	IFSM	30.0				Amps
Maximum instantaneous forward voltage at 1.0A	VF	0.975				Volts
Maximum DC reverse currentTA=25°Cat rated DC blocking voltageTA=100°C	IR	2.0 50.0				μA
Maximum reverse recovery time (NOTE 1)	trr	25.0			ns	
Typical junction capacitance (NOTE 2)	CJ	45.0				pF
Typical thermal resistance (NOTE 3) (NOTE 4)	R _{ØJA} Røjl	65.0 20.0				°C/W
Operating junction and storage temperature range	TJ, TSTG		-65 to +175			


NOTES:

- (1) Reverse recovery test conditions: IF=0.5A, IR=1.0A, Irr=0.25A
- (2) Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts
- (3) Thermal resistance from junction to ambient at 0.375" (9.5mm) lead length and mounted on P.C.B. with 0.5 x 0.5" (12 x 12mm)
- (4) Thermal resistance from junction to lead at 0.375" (9.5mm) lead length with both leads attached to heatsinks

RATINGS AND CHARACTERISTIC CURVES GI1001 THRU GI1004

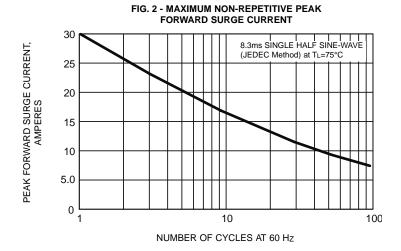
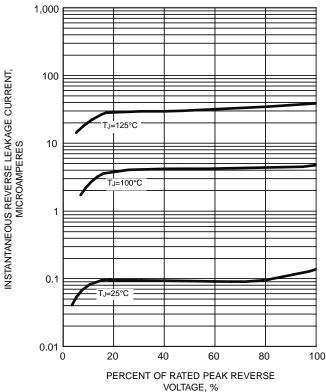
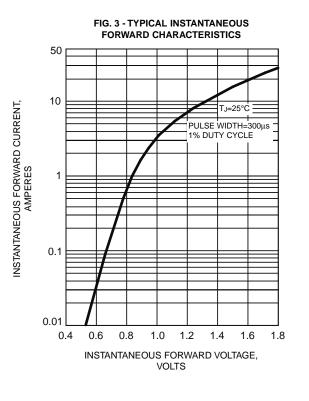





FIG. 4 - TYPICAL REVERSE LEAKAGE CHARACTERISTICS

