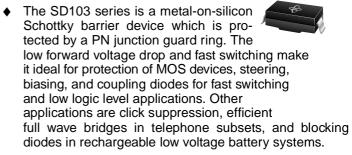

SD103AW THRU SD103CW

Schottky Diodes


SOD-123

Dimensions in inches and (millimeters)

FEATURES

• For general purpose applications.

This diode is also available in MiniMELF case with the type designation LL103A ... LL103C and DO-35 case with the type designations SD103A .. SD103C.

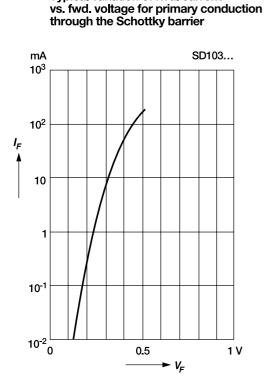
MECHANICAL DATA

Case: SOD-123 Plastic Case Weight: approx. 0.01 g

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

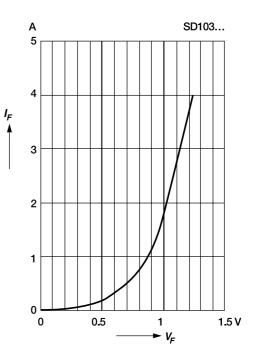
Ratings at 25 °C ambient temperature unless otherwise specified

		Symbol	Value	Unit
Peak Inverse Voltage	SD103AW SD103BW SD103CW	V _{RRM} V _{RRM} V _{RRM}	40 30 20	V V V
Power Dissipation (Infinite Heat Sink)		P _{tot}	400 2)	mW
Single Cycle Surge 10 μs Square Wave		I _{FSM}	2	A
Junction Temperature		Tj	125 ²⁾	°C
Storage Temperature Range		T _S	-55 to +150 ²⁾	°C
²⁾ Valid provided that electroo	des are kept at ambient tem	perature		

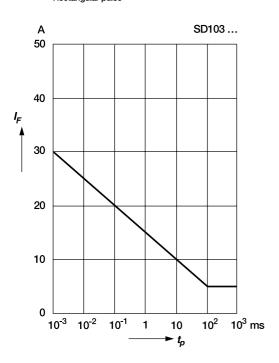

SD103AW THRU SD103CW

ELECTRICAL CHARACTERISTICS

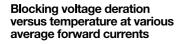
Ratings at 25 °C ambient temperature unless otherwise specified

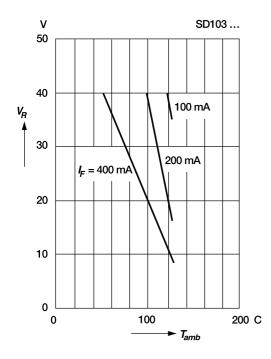

	Symbol	Min.	Тур.	Max.	Unit
Leakage Currentat $V_R = 30 V$ SD103AWat $V_R = 20 V$ SD103BWat $V_R = 10 V$ SD103CW	I _R I _R I _R			5 5 5	μΑ μΑ μΑ
Forward Voltage Drop at I _F = 20 mA at I _F = 200 mA	V _F V _F		-	0.37 0.6	V V
Junction Capacitance at V _R = 0 V, f = 1 MHz	C _{tot}	-	50	_	pF
Reverse Recovery Time at $I_F = I_R = 50$ mA to 200 mA, recover to 0.1 I_R	t _{rr}	_	10	-	ns
Thermal Resistance Junction to Ambient Air	R _{thJA}	-	-	0.3 2)	K/mW
²⁾ Valid provided that electrodes are kept at ambie	ent temperature	e (SOD-123)			

RATINGS AND CHARACTERISTICS SD103AW THRU SD103CW

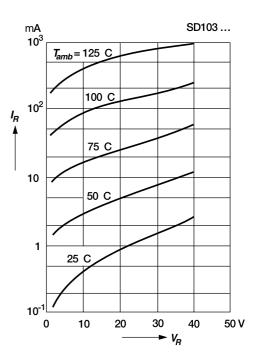

Typical variation of fwd. current

Typical high current forward conduction curve $t_p = 300$ ms, duty cycle = 2%

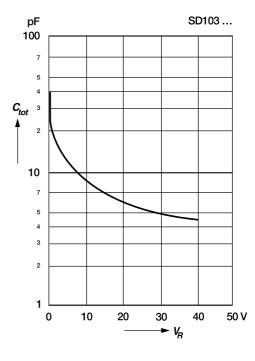




RATINGS AND CHARACTERISTIC CURVES SD103AW THRU SD103CW



Typical non repetitive forward surge current versus pulse width Rectangular pulse



Typical variation of reverse current at various temperatures

Typical capacitance versus reverse voltage

GENERAL SEMICONDUCTOR®