

LF580 DATA SHEET

FEATURES

- only 2 small capacitors required
- 200 to 10 kHz adjustable corner frequency
- dual 12 dB/Oct Butterworth filter (24 dB/Oct cascaded)
- 1.1 to 3.0 VDC operating range
- adjustable by a single potentiometer

STANDARD PACKAGING

- 8 pin MICROpac
- 8 pin PLID ®
- Chip (66 x 61mils)

DESCRIPTION

The LF580 continuous analog filter consists of two second order (12 dB/oct), tunable (0.2 to 10 kHz) highpass Butterworth filter blocks.

Tracking and corner frequency of each block are controlled by a single potentiometer. Cascading the two blocks together results in a single 24dB/oct high pass filter requiring only two external $0.001 \,\mu$ F capacitors for the filter response.

The output noise of each filter stage is typically 5.6μ V. Cascading the two filter blocks together will produce a noise level which is

$$V_{\rm N} = \sqrt{(V_{\rm N1})^2 + (V_{\rm N2})^2}$$

Where $\rm V_{N}$ is the total output noise of both filters, $\rm V_{N1}$ and $\rm V_{N2}$ is the noise of each filter.

To improve the signal-to-noise ratio of the filter the LF580 should be placed after a preamplifier, provided that the signal level does not exceed the maximum signal capability of 50mVRMS

All resistors in ohms, all capacitors in microfarads unless otherwise stated

BLOCK DIAGRAM

Revision Date: January 2001

Document No. 500 - 73 - 08

ABSOLUTE MAXIMUM RATINGS

PARAMETER	VALUE/UNITS
Supply Voltage	5 V DC
Operating Temperature Range	-10°C to 50° C
Storage Temperature Range	-40°C to 100° C
CAUTION	
CAUTION	

CLASS 1 ESD SENSITIVITY

ELECTRICAL CHARACTERISTICS

Conditions: Frequency = 1 kHz, Temperature = 25°C, Supply Voltage V_{B} = 1.3 V

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Insertion Loss		V _{IN} =1 V _{RMS}	Note 1	-	2	3	dB
Current Drain	I⊤	$R_{CNT} = 100 \text{ k}\Omega$		200	280	370	μA
Corner Frequency	f _C	V _{IN} =1 V _{RMS}	Note 2	1300	1650	1900	Hz
Distortion	THD	$V_{IN} = 1.25 V_{RMS}$		-	2	5	%
Ouput Noise			Note 3	-	8	10	μV
Supply Rejection	SR	$V_B = 3.0V_{DC}$	Note 4	-	45	56	dB

All parameters and switches remain as shown in Test Circuit unless otherwise stated in "Conditions" column

Notes 1: Insertion Loss = 20 Log(V_{OUT}/V_{IN})-12

2: a) measure output voltage V_{OUT1} (R_{CNT} =100k Ω) b) measure output voltage $V_{OUT2}~(R_{CNT}\,{=}\,10.274k\Omega)$ $f_{c} = 1000 \times 2^{(V_{OUT1} / V_{OUT2})}$

3: Output Noise = V_{OUT} /100, filter bandwidth 200Hz to 10kHz at 12dB/Oct

4: V_{B} modulated with $1V_{RMS}$ at 1 kHz

Supply Rejection = 20 Log (V_{OUT})-40

All resistors in ohms, all capacitors in microfarads unless otherwise stated in conditions column

Fig. 1 Test Circuit

All resistors in ohms, all capacitors in microfarads unless otherwise stated

Fig. 2 Functional Schematic

All resistors in ohms, all capacitors in microfarads unless otherwise stated

Fig. 3 GL504-LF580 Application Circuit

Fig. 6 Corner Frequency vs Control Resistance

Fig. 7 Current Drain vs Corner Frequency

100

10000

Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement. © Copyright October 1987 Gennum Corporation. All rights reserved. Printed in Canada.