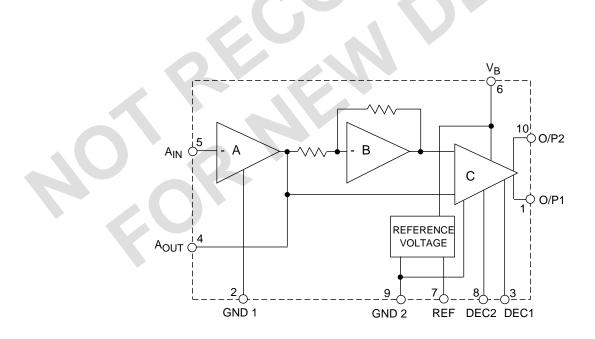


LC551 DATA SHEET

FEATURES

- adjustable gain to 48 dB
- capable of driving low impedance receiver (110 Ω)
- low parts count, 3 small capacitors & 1 resistor
- gain trim can be used as volume control for reduced noise
- · minimal start up transient
- frequency bandwidth of 18 kHz

STANDARD PACKAGING


- 10 pin PLID ®
- Chip (80 x 61 mils)

DESCRIPTION

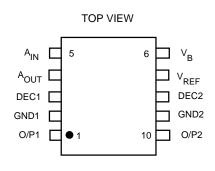
The LC551 is a 10 pin low voltage, class B amplifier which operates over a battery voltage range of 1.1 V DC to 3 V DC.

The LC551 consists of three gain blocks. The first block is an inverting amplifier with the gain set by two external resistors. This gain trim feature can be used as a volume control in hearing aid applications. The second block is an inverting unity gain amplifier which serves as a phase splitter. The outputs from the first and second blocks drive the differential inputs of the third block. The third block has a fixed AC gain of 28 dB when driving a receiver.

This amplifier has internal compensation eliminating the need for a capacitor across the receiver. Two ground pins are available for "*star*" grounding to reduce any second harmonic distortion produced by ground line resistance.

U.S. Patent No. 4,719,430, other patents pending.

BLOCK DIAGRAM


Revision Date: January 2001

Document No. 500 - 77 - 5

ABSOLUTE MAXIMUM RATINGS

PIN CONNECTION

PARAMETER	VALUE/UNITS			
Supply Voltage	5 V			
Operating Temperature Range	-10° C to 40° C			
Storage Temperature Range	-20° C to 70° C			
CAUTION CLASS 1 ESD SENSITIVITY				

ELECTRICAL CHARACTERISTICS

All switches remain as shown in Test Circuit unless stated in condition column Conditions: Supply voltage V_B= 1.3 V DC, Temperature ambient = 25°C, Noise Filter Bandwidth at 12 dB/Oct (0.2 to 10 kHz)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Gain		A _V		46	48	50	dB
Gain Expansion			Ouput Level 1.3 VRMS	-	-	3	dB
Quiescent Current:	Amplifier	I _{AMP}		120	210	335	μΑ
	Transducer	I _{TR}		120	220	405	μΑ
	Total	I _{TOT}		240	430	740	
Input Referred Noise			V _{IN} = 0 (S1 - A)	-	1.3	2.5	μV
			Output Level 0.707 VRMS	-	1.2	2.5	%
Total Harmonic Distortion		THD	Output Level 1.3 VRMs	-	3	5.2	%
Stable with battery resistance to				-	22	-	Ω

NOTES: 1. Gain expansion = Gain (at 1.3 VRMS output) - Gain (at 0.707 VRMS output)

2. Output impedance is typically 8 Ω with V_{OUT} = 0.5 VRMS

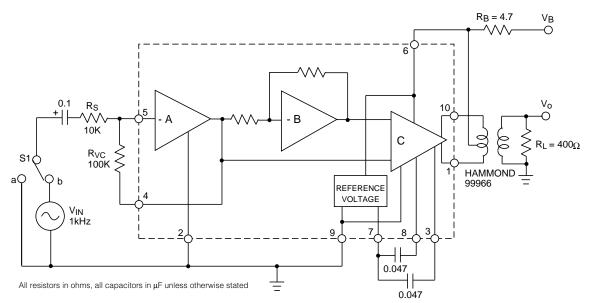


Fig. 1 Test Circuit

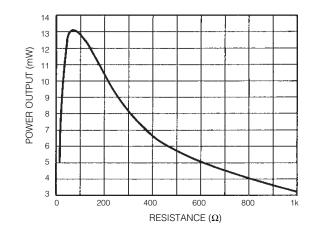


Fig. 2 Power Output vs Load Resistance at 7% Distortion $R_B = 0$ V_B = 1.35 V

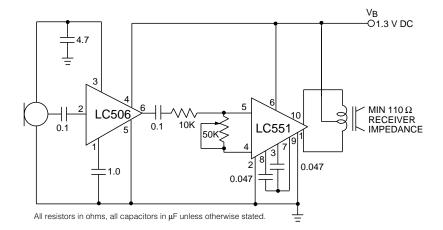
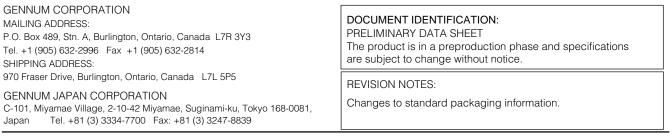



Fig. 3 Typical Hearing Aid Application

Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement. © Copyright November1984 Gennum Corporation. All rights reserved. Prin

Printed in Canada.