Features

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Metal silicon junction, majority carrier conduction
- Guardring for overvoltage protection
- Low power loss, high efficiency
- High current capability, low forward voltage drop
- High surge capability
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: $250^{\circ} \mathrm{C} / 10$ seconds, 2.8 mm lead length
stun

Mechanical Data

Case: SMA molded plastic body

- Polarity: Color band denotes cathode end
- Mounting Position: Any
- Weight: 0.004 ounce, 0.11 gram

DIMENSIONS					
D IM	inches		m m		Note
	M in.	Max.	M in.	Max.	
A	0.216	0.226	5.48	5.74	
в	0.176	0.182	4.48	4.63	
c	0.094	0.100	2.40	2.55	
D	0.170	0.176	4.33	4.48	
E	0.039	0.055	1.00	1.40	
F	0.080	0.081	2.03	2.07	
G	0.068	0.083	1.72	2.10	
H	0.112	0.118	2.85	3.00	
J	0.057	-	1.44	-	
к	-	0.018	-	0.45	
L	0.016	-	0.40	-	
M	0.109	0.115	2.77	2.93	
N	0.105	0.107	2.67	2.73	
P	0.078	0.081	2.00	2.05	

Maximum Ratings and Electrical Characteristics

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified.

	Symbols	SKN7	SKN8	SKN9	Units
Maximum repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	20	30	40	Volts
Maximum RMS voltage	$V_{\text {RMS }}$	14	21	28	Volts
Maximum DC blocking voltage	$V_{\text {DC }}$	20	30	40	Volts
Maximum non-repetitive peak reverse voltage	$\mathrm{V}_{\text {RSM }}$	24	36	48	Volts
Maximum average forward rectified current 2.8 mm lead length at $\mathrm{T}_{\mathrm{L}}=90^{\circ} \mathrm{C}$	$I_{\text {(AV) }}$		1.0		Amp
Peak forward surge current, 8.3 mS single half sine-wave superimposed on rated load (MIL-STD-750D 4066 method) at $T_{L}=70^{\circ} \mathrm{C}$	$I_{\text {FSM }}$		25.0		Amps
Maximum instantaneous forward voltage at 1.0A (Note 1) Maximum instantaneous forward voltage at 3.1A (Note 1)	$\begin{aligned} & V_{F} \\ & V_{F} \end{aligned}$	$\begin{aligned} & 0.450 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 0.550 \\ & 0.875 \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.900 \end{aligned}$	Volts Volts
Maximum instantaneous reverse current $T_{A}=25^{\circ} \mathrm{C}$ at rated DC blocking voltage $T_{A}{ }^{A} 110^{\circ} \mathrm{C}$	I_{R}		$\begin{gathered} 1.0 \\ 10.0 \end{gathered}$		mA
Typical junction capacitance (Note 3)	C ${ }$		110.0		$\rho \mathrm{F}$
Typical thermal resistance (Note 2)	$\begin{aligned} & \mathrm{R}_{(\oplus \mathrm{JA}} \\ & \mathrm{R}_{\oplus \mathrm{UJ}} \\ & \hline \end{aligned}$		$\begin{aligned} & 50.0 \\ & 15.0 \end{aligned}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating junction and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$		-65 to +125		${ }^{\circ} \mathrm{C}$

Notes:

(1) Pulse test: 300 uS pulse width, 1% duty cycle
(2) Thermal resistance from junction to lead, and/or to ambient P.C.B. mounted with 2.8 mm lead length with $1.5 \times 1.5^{\prime \prime}$ ($38 \times 38 \mathrm{~mm}$) copper pads
(3) Measured at 1.0 MHz and applied reverse voltage of 4.0 volts

RATINGS AND CHARACTERISTIC CURVES

Instantaneous Forward Current - Amperesversus Instantaneous Forward Voltage - Volts

Figure 2
Typical Reverse Characteristics

Typical Reverse Current - mAversus Reverse Voltage - Volts

Figure 3
Typical Junction Capacitance

Junction Capacitance - pF versus
Reverse Voltage - Volts

Figure 4

Round Lead
Process

RATINGS AND CHARACTERISTIC CURVES

Figure 1
Typical Forward Characteristics

Instantaneous Forward Current - Amperesversus Instantaneous Forward Voltage - Volts

Figure 2
Typical Reverse Characteristics

Typical Reverse Current - mAversus
Reverse Voltage - Volts

Figure 3
Typical Junction Capacitance

Junction Capacitance - pF versus
Reverse Voltage - Volts

Figure 4

Round Lead
Process

