
Features

- Ideal for Use in PC100 Registered DIMM
- 0.5mm CMOS Technology
- 2.3 ~ 3.6 V_{cc} Operation
- Balanced Output Drive(±24mA)
- Package Options Include Plastic Thin Shrink Small-Outline Packages, Shrink Small-Outline Packages (TSSOP 56 Pins, SSOP 56 Pins, TVSOP56 Pins)

Pin Configuration

NC- No ineternal connection

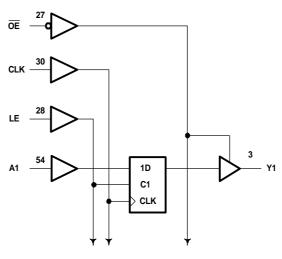
General Description

The HG74ALVC16835C is an 18-bit universal bus driver designed for 2.3V to 3.6 V V_{CC} Operation.

The Output-Enable(\overline{OE}) controls data flow from A to Y. The device operates in transparent mode when the latch-enable(LE) input is high. When LE is low, the A data is latched if the clock input is held at a high or low logic level.

If LE is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLK.

When $\overline{\text{OE}}$ is high, the Outputs are in the high impedance state. $\overline{\text{OE}}$ should be tied to V_{CC} through a pull up resistor to ensure the high impedance state during power up or power down.

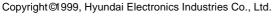

The HG74ALVC16835C is characterized for operation from -40°C to 85°C.

Function Table

	INPUTS						
Œ	LE	CLK	Α	OUTPUT Y			
Н	Х	Х	Х	Z			
L	Н	Х	L	L			
L	Н	Х	Н	Н			
L	L	1	L	L			
L	L	↑	Н	Н			
L	L	L or H	X	Y_0^{\dagger}			

†Output level before the indicated steady-state input conditions were established, provided that CLK is high before LE goes low.

Logic Diagram (positive logic)


TO 17 Other Channels

Absolute Maximum Ratings Over Operating Free-air Temperature Ranget

Symbols	Parameter	Value	Conditions
V_{cc}	Supply Voltage Range	-0.5 V to 4.6 V	
V_{l}	Input Voltage Range (see note 1)	-0.5V to V _{cc} +0.5V	
V_{o}	Output Voltage Range (see note 1 and 2)	-0.5V to V _{cc} +0.5V	
I _{IK}	Input Clamp Current	±50 mA	V ₁ < 0
I _{ok}	Output Clamp Current	±50 mA	$V_O < 0$ or $V_O > V_{CC}$
Ι _ο	Continuous Output Current	\pm 50 mA	$V_{O} = 0$ to V_{CC}
I _{cc}	Continuous Current through each V _{CC}	+100 mA	
I _{GND}	Continuous Current through each GND	-100 mA	
T_{stg}	Storage Temperature Range	-65°C to 150°C	

tStresses beyond those listed under "absolute maximum rating" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating condition" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Note 1) The input and output voltage ratings may be exceeded if the input and output clamp current are observed. Note 2) This value is limited to 4.6 V maximum.

18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

Recommended Operating Conditions (see Note 3)

Cymbolo	Doromotor	Va	llue			
Symbols	Parameter	MIN	MAX	Units	Conditions	
V_{cc}	Supply Voltage	2.3	3.6	V		
	High -level input Voltage	1.7		V	V _{CC} =2.3V to 2.7V	
V_{IH}	riigii -ievei iriput voitage	2		V	$V_{CC} = 2.7V \text{ to } 3.6V$	
\/	Low-level input Voltage		0.7	V	V_{CC} =2.3V to 2.7V	
V_{IL}	Low-level input voltage		0.8	V	$V_{CC} = 2.7V \text{ to } 3.6V$	
V_{l}	Input Voltage	0	V_{cc}	V		
V_{o}	Output Voltage	0	V_{cc}	V		
			-12	mA	V _{CC} =2.3V	
I _{OH}	High-level output current		-12	mA	$V_{CC} = 2.7V$	
			-24	mA	$V_{CC} = 3V$	
			12	mA	V _{CC} =2.3V	
I _{OL}	Low-level output current		12	mΑ	V _{CC} =2.7V	
			24	mA	V _{CC} =3V	
$\Delta t/\Delta v$	Input transition rise or fall rate	0	10	ns/V		
T _A	Operating free-air temperature	-40	85	°C		

Note 3) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Electrical Characteristics Over Recommended Operating Free-air Temperature Range

								<u>~</u>
		Ţ		Value				
Parameter		Test Conditions		Min	Typ t	Max	Units	V _{cc}
		I _{OH} = -100μA		V _{cc} - 0.2				2.3V to 3.6V
		$I_{OH} = -6mA$	$V_{IH} = 1.7V$	2				2.3V
Vo		I _{OH} = - 12mA	$V_{IH} = 1.7V$	1.7			V	2.3V
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Н	1 _{OH} = -12111A	V _{IH} = 2V	2.2			V	2.7V
				2.4				3V
		$I_{OH} = -24 \text{ mA}$	$V_{IH} = 2V$	2				3V
		$I_{OL} = 100\mu A$ $I_{OL} = 6mA$				0.2		2.3V to 3.6V
	V_{OL}		$V_{IL} = 0.7V$			0.4		2.3V
Vo			$V_{IL} = 0.7V$			0.7	V	2.3V
		I _{OL} =24mA	$V_{IL} = 0.8V$			0.4		2.7V
			$V_{IL} = 0.8V$			0.55		3V
I_{L}		$V_{I} = V_{CC}$ or GND				± 5		3.6V
I _{Ož}	7	$V_{O} = V_{CC}$ or GND)			±10		3.6V
		$V_I = V_{CC}$ or GND				40	μΑ	3.6V
¹CI	I _{cc}					40	μΑ	3.0 V
Al	ΔI_{CC}		One input at V _{CC} - 0.6V,			750		3V to 3.6V
		Other inputs at V _{CC} or GND				730		0 V 10 0.0 V
	Control Inputs	\/ - \/ . or CND			3.5		_	
Cı	Data Inputs	$V_I = V_{CC}$ or GND			_		ρF	3.3V
	Zata iripato				5			
C _o	Outputs	$V_O = V_{CC}$ or GND			7		ρF	3.3V

[†] All typical Values are at V_{CC} =3.3V, T_A = 25°C.

Timing Requirements Over Recommended Operating Free-air Temperature Range(see figure1~10)

Symbol	Parameter	Condition		Vcc=2.	5V±0.2V	Vcc	=2.7V	Vcc=3	.3V±0.3V	Unit
				Min	Max	Min	Max	Min	Max	
f _{clock}	Clock frequency				150		150		150	MHz
4	Pulse	LE high		3.3		3.3		3.3		ns
t_W	Duration	CLK high or low		3.3		3.3		3.3		ns
		Data before CLK↑		0.9		0.9		0.7		ns
t_{su}	Setup time	Data before LE↓	CLK high	1.9		1.6		1.5		ns
			CLK low	1.3		1.1		1		ns
		Data after 0	CLK [↑]	1.0		1.0		1.1		ns
t _h	Hold time	Data after LE↓	CLK high or low	1.4		1.7		1.4		ns

Switching Characteristics Over Recommended Operating Free-air Temperature Range

Parameter	Input	Output	V _{cc} =2.5	V± 0.2V	V _{cc} =	2.7V	V _{cc} =3.3	3V±0.3V	Unit
Parameter	(From)	(to)	Min	Max	Min	Max	Min	Max	Ollit
f _{max}			150		150		150		MHz
	Α		1	4.2		4.2	1	3.6	ns
t_{pd}	LE	Y	1.3	5		4.9	1.3	4.2	ns
·	CLK		1.4	5.5		5.2	1.4	4.5	ns
t _{en}	ŌĒ	Y	1.4	5.5		5.6	1.1	4.6	ns
I _{dis}	ŌĒ	Y	1	4.5		4.3	1.3	3.9	ns

Switching Characteristics From 0°C to 65°C, C_L=50rF

Parameter	Input	Output	V _{cc} =3.3\	Unit	
	(From)	(To)	Min	Max	Offic
t_{pd}	CLK	Υ	1.7	4.5	ns

Parameter Measurement (V_{cc}=2.5V±0.2V)

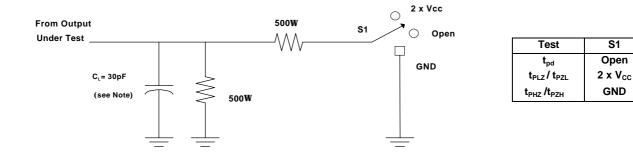


Figure 1. Load Circuit

Note) C_L includes probe and jig capacitance

Voltage Waveforms

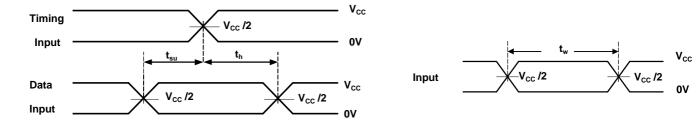


Figure 2. Set up and Hold Times

Figure 3. Pulse Duration

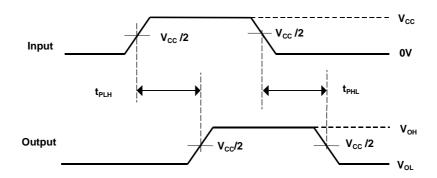


Figure 4. Propagation Delay times

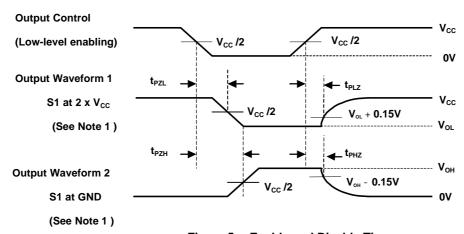


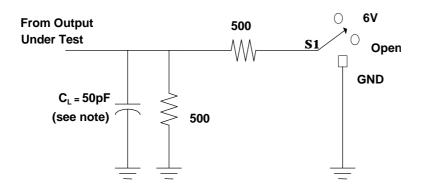
Figure 5. Enable and Disable Times

Note 1)Waveform1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform2 is for an output with internal conditions such that the output is high except when disabled by the output control.

Note 2) All input pulses are supplied by generators having the following characteristics:

Note 2) All input pulses are supplied by generators having the following characteristics: $PRR \subseteq 10 Mhz, \, Z_o = 50\Omega \, , \, t_r \subseteq 2 ns, \, t_f \quad \subseteq 2 ns.$

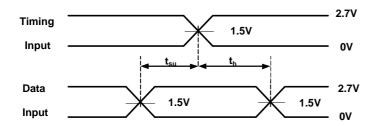

Note 3) The output are measured one at a time with one transition per measurement.

Note 4) t_{PLZ} and t_{PHZ} are the same as t_{dis} .

Note 5) t_{PZL} and t_{PZH} are the same as t_{en} .

Note 6) t_{PLH} and t_{PHL} are the same as t_{pd} .

Parameter Measurement (Vcc=2.7V and 3.3V±0.3V)



Test	S 1
t _{pd}	Open
t_{PLZ}/t_{PZL}	6V
t _{PHZ} /t _{PZH}	GND

Figure 6. Load Circuit

Note) C_L includes probe and jig capacitance

Voltage Waveforms

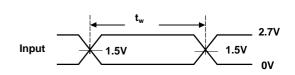


Figure 7. Set up and Hold Times

Figure 8. Pulse Duration

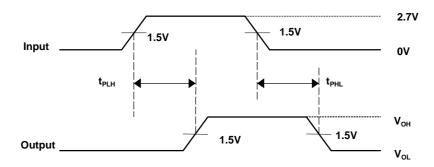


Figure 9. Propagation Delay times

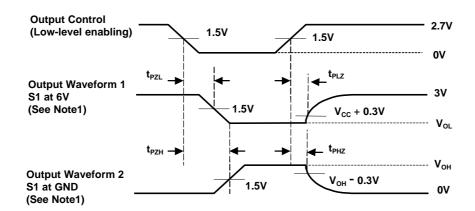


Figure 10. Enable and Disable Times

Note 1) Waveform1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform2 is for an output with internal conditions such that the output is high except when disabled by the output control Note 2) All input pulses are supplied by generators having the following characteristics:

PRR \subseteq 10MHz, $Z_0 = 50\Omega$, $t_r \subseteq 2.5$ ns, $t_f \subseteq 2.5$ ns.

Note 3) The output are measured one at a time with one transition per measurement.

Note 4) t_{PLZ} and t_{PHZ} are the same as t_{dis} .

Note 5) t_{PZL} and t_{PZH} are the same as t_{en} .

Note 6) t_{PLH} and t_{PHL} are the same as t_{pd} .

