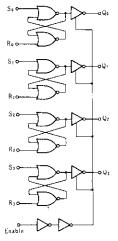
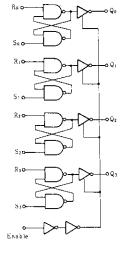
HD14043B,HD14044B

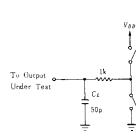
Quadruple R-S Latch

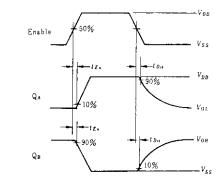
The HD14043B and HD14044B quad R-S latches have an independent Q output and set and reset inputs. The Q outputs are gated through three-state buffers having a common enable input. The outputs are enabled with a logical "1" or high on the enable input; a logical "0" or low disconnects the latch from the Q outputs, resulting in an open circuit at the Q outputs.


FEATURES


- Quiescent Current = 4 nA/pkg typ. @10V
- Double Diode Input Protection
- Three-State Outputs with Common Enable
- Outputs Capable of Driving One Low-power Schottky TTL Load Over the Rated Temperature Range
- Supply Voltage Range = 3 to 18V

LOGIC DIAGRAM

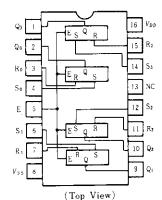

HD14043B


●HD14044B

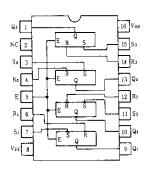
THREE-STATE ENABLE/DISABLE DELAYS

Testing Method

Test	s	R	HD14043B			HD14044B		
			S_1	S2	Q	S 1	S2	Q
ten	VDD	Vss	Open	Closed	A	Closed	Ugers.	B
ten	Vss	VDD	Closed	Open	В	Open	Closed	A
to,,	VDD	Vss	Open	Closed	Α	Closed	Open	В
t _{Di} ,	Vss	V_{DD}	Clused	Upen	В	Open	Clused	Α


Sι

\ S₂


VSS

PIN ARRANGEMENT

•HD14043B

●HD14044B

TRUTH TABLE

HD14043B

S	R	E	Q
х	X	0	High Inpedance
0	0	1	No Change
0	1	1	0
1	0	1	1
1	1	1	1

•HD14044B

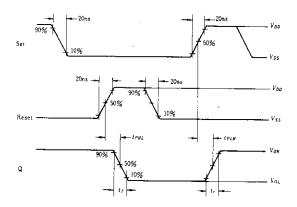
S	R	E	Q.
х	X	0	High Inpedance
0	0	1	0
0	1	I	1
1	0	1	0
1	1	1	No Change

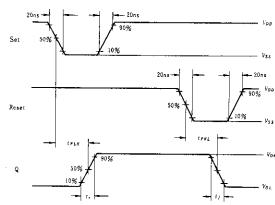
x=Don't Care

Characteristic	Symbol	$V_{DD}(V)$ Test Conditions		-40°C		25°C			85 ℃		11.1
Characteristic	Symbol			min	max	min	typ	max	min	max	Unit
		5.0		-	0.05		0	0.05		0.05	v
-4	Vol	10	$V_{in} = V_{DD}$ or 0	-	0.05		0	0.05		0.05	
O to the Welterer		15		-	0.05	-	0	0.05	1	0.05	
Output Voltage		5.0		4.95	-	4.95	5.0	-	4.95	-	v
	Voн	10	$V_{in} = 0$ or V_{DD}	9.95		9.95	10	_	9.95	-	
		15		14.95	—	14.95	15	_	14.95	-	
· · · · · · · · · · · · · · · · · · ·		5.0	$V_{out} = 4.5 \text{ or } 0.5 \text{V}$	-	1.5	-	2.25	1.5	-	1.5	i
•	V_{lL}	10	V _{ext} =9.0 or 1.0V	-	3.0		4.50	3.0	-	3.0	
T ()7-14		15	V _{sut} =13.5 or 1.5V	-	4.0	_	6.75	4.0	_	4.0	
Input Voltage	V _{IH}	5.0	V _{out} =0.5 or 4.5V	3.5	_	3.5	2.75		3.5	-	
		10	0 Vout = 1.0 or 9.0V		—	7.0	5.50	—	7.0	_	v
		15	$V_{out} = 1.5 \text{ or } 13.5 \text{V}$	11.0	-	11.0	8.25	-	11.0	-	1
	<i>Іон</i>	5.0	$V_{OH} = 2.5 V$	-2.5	_	-2.1	-4.2	-	-1.7		i
		5.0	$0 V_{OH} = 4.6V$ -0.520		-0.44	-0.88	-	-0.36	-		
		10	V _{он} =9.5V	-1.3		-1.1	-2.25	_	-0.9		n mA
Output Drive Current		15	$V_{OH} = 13.5V$ -3.6 $ -3.01$ -8		-8.8		-2.4		1		
	Iol	5.0	V _{0L} =0.4V 0.52 - 0.44		0.44	0.88	-	0.36	-		
		10	$V_{0L} = 0.5V$	1.3	_	1.1	2.25	-	0.9		mA
		15	15 $V_{0L} = 1.5V$		_	3.0	8.8	_	2.4		•
Input Current	In	15		. –	±0.3	-	±0.00001	±0.3	_	±1.0	μA
Input Capacitance	Ca	-	$V_{in} = 0$	i –	-	_	5.0	7.5		-	pF
	100	5.0	7	- 1	4.0	-	0.002	4.0	. –	30	μA
Quiescent Current		10	Zero Signal,	_	8.0	-	0.004	8.0	-	60	
		15	per Package	-	16	-	0.006	16	_	120	
		5.0	Dynamic+ I_{DD} ,	+ -		-	0.58		_	_	-
Total Supply Current*	Γτ	10	per Gate		-	-	1,15		-	_	
		15	$C_{\perp} = 50 \text{pF}, f = 1 \text{ kHz}$		i —	-	1.73	_	-	_	
Three-State Output Leakage Curren	ITL	15		<u> </u>	±1.0		+ 0.00001	±1.0	_	±7.5	μA

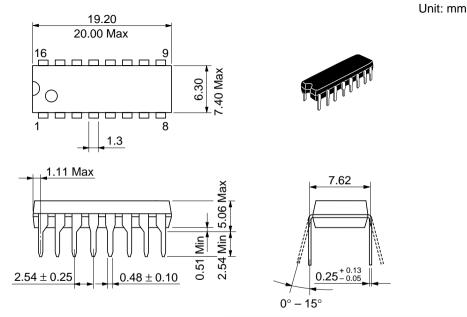
ELECTRICAL CHARACTERISTICS

* To calculate total supply current at frequency other than 1kHz. $@V_{20} = 5.0V$ $i_7 = (0.58 \mu A/kHz)f + i_{20}$, $@V_{20} = 10V$ $i_7 = (1.15 \mu A/kHz)f + i_{20}$, $@V_{20} = 15V$ $i_7 = (1.73 \mu A/kHz)f + i_{20}$.




SWITCHING CHARACTERISTICS ($C_L = 50 \text{pF}$, Ta = 25 °C)

Characteristic	Symbol	V_{DD} (V)	min	typ	max	Unit
		5.0	_	100	200	ns
Output Rise Time	t.	10		50	100	
		15	_	40	80	
		5.0	-	100	200	ns
Output Fall Time	t_f	10		50	100	
		15	_	40	80	
	-	5.0	-	175	350	ns
	t _{PLH}	10		75	175	
Propagation Delay Time		15		60	120	
Tropagation Denay Time		5.0	—	175	350	;
	Ì₽ <i>H</i> L	10	-	75	175	- ns
-		15	_	60	120	
	PWs	5.0	200	80		ns
Set Pulse Width		10	100	40	_	
		15	70	30	_	÷
		5.0	200	80	_	ns
Reset Pulse Width	PW_R	10	100	40	-	
		15	70	30	_	
	y <i>t_{En}</i> ,	5.0		150	300	
Three-state Enable/Disable Delay		10	—	80	160	ns
	t p.s	15		55	110	


DYNAMIC SIGNAL WAVEFORMS

•HD14043B

●HD14044B

Hitachi Code	DP-16
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	1.07 g

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 NorthAmerica URL http:semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg Europe http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm http://www.hitachi.co.jp/Sicd/indx.htm Japan For further information write to: Hitachi Semiconductor Hitachi Europe GmbH Hitachi Asia Pte. Ltd. (America) Inc. Electronic components Group 16 Collyer Quay #20-00 179 East Tasman Drive, Dornacher Stra§e 3 Hitachi Tower San Jose,CA 95134 D-85622 Feldkirchen, Munich Singapore 049318 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Germany Tel: 535-2100 Tel: <49> (89) 9 9180-0 Fax: 535-1533 Fax: <49> (89) 9 29 30 00

 Fax: <49> (89) 9 29 30 00
 Hita

 Hitachi Europe Ltd.
 Hita

 Electronic Components Group.
 Taip

 Whitebrook Park
 3F,

 Lower Cookham Road
 Tun

 Maidenhead
 Tel:

 Berkshire SL6 8YA, United Kingdom
 Fax

 Tel: <44> (1628) 585000

 Fax: <44> (1628) 778322

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

HITACHI

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.