
Typical Applications

26 to 33 GHz Microwave Radios

Up and Down Converter for Point to Point Radios

Satellite Communication Systems

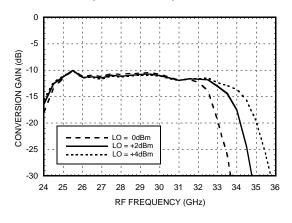
Functional Diagram

Features

Integrated LO Amplifier: +2 dBm Input Sub-Harmonically Pumped (x2) LO Image Rejection: 22 dB Typical Small Size: 1.24mm x 1.86mm

General Description

The HMC404 chip is a sub-harmonically pumped (x2) MMIC image rejection mixer with an integrated LO amplifier which can be used as an upconverter or downconverter. The chip utilizes a GaAs PHEMT technology that results in a small overall chip area of 2.31mm². The on-chip 90° hybrid provides excellent amplitude and phase balance resulting in greater than 22 dB of image rejection. The LO amplifier is a single bias (+3V to +4V) two stage design with only +2 dBm nominal drive required.


Guaranteed Performance, As a Function of Vdd, 25 Deg °C

Parameter	IF= 1 GHz LO= +2 dBm & Vdd= +4V			Units	
	Min.	Тур.	Max.		
Frequency Range, RF		26 - 33		GHz	
Frequency Range LO		13 - 16.5		GHz	
Frequency Range, IF		DC - 3		GHz	
Conversion Loss (Desired Sideband)		11		dB	
Noise Figure		11		dB	
Image Rejection		22		dB	
Amplitude Balance		±1.5		dB	
Phase Balance		±7		Deg	
2LO to RF Isolation		35		dB	
2LO to IF Isolation		40		dB	
IP3 (Input)		17		dBm	
1 dB Compression (Input)		+6		dBm	
Supply Voltage (Vdd)		4.0		Vdc	
Supply Current (Idd)		28		mA	

^{*} Unless otherwise noted, all measurements performed as downconverter.

Conversion Gain to Desired Sideband vs. LO Drive, IF = 1 GHz, Vdd= +4V

Conversion Gain to Desired Sideband vs. LO Drive, IF = 1 GHz, Vdd= +3V

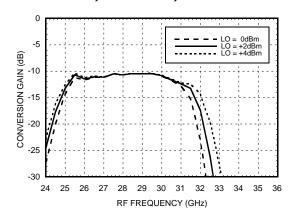
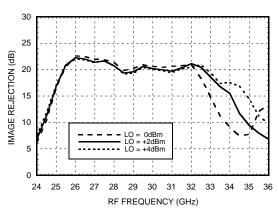
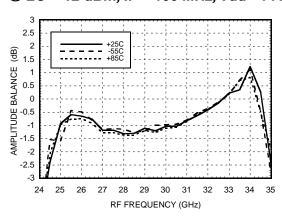
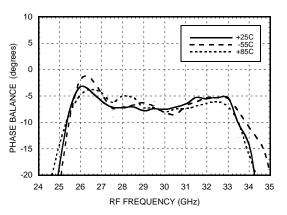
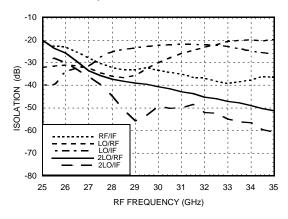


Image Rejection vs. LO Drive, IF = 1 GHz, Vdd= +4V

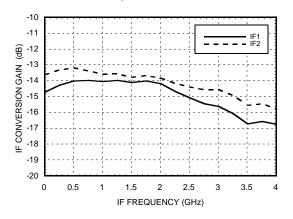



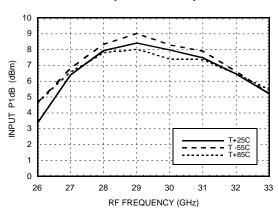

Image Rejection vs. LO Drive, IF = 1 GHz, Vdd= +3V

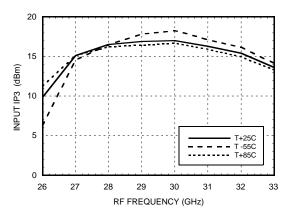
Amplitude Balance vs. Temperature @ LO = +2 dBm, IF = 100 MHz, Vdd= +4V



Phase Balance vs. Temperature @ LO = +2 dBm, IF = 100 MHz, Vdd= +4V

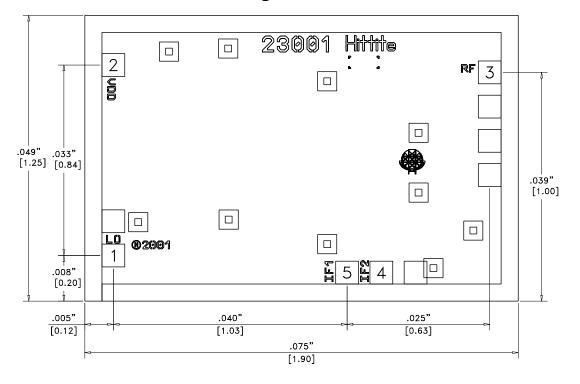



Isolation @ LO = +2 dBm, IF = 100 MHz, Vdd = +4V


IF Bandwidth @ LO = +2 dBm, Vdd = +4V

Input P1dB vs. Temperature @LO = +2 dBm, IF = 1 GHz, Vdd = +4V

Input IP3 vs. Temperature @LO = +2 dBm, IF = 1 GHz, Vdd = +4V


^{*} Two-tone input power = -10 dBm each tone, 1 MHz spacing.

Absolute Maximum Ratings

RF / IF Input (Vdd = +5V)	+13 dBm	
LO Drive (Vdd = +5V)	+13 dBm	
Vdd	5.5V	
Continous Pdiss (Ta= 85 °C) (derate 2.64 mW/°C above 85 °C)	238 mW	
Storage Temperature	-65 to +150 deg C	
Operating Temperature	-55 to +85 deg C	

Pad Locations & Outline Drawing

ALL DIMENSIONS IN INCHES (MILLIMETERS)
ALL TOLERANCES ARE ±0.001 (0.025)
DIE THICKNESS IS 0.004 (0.100) BACKSIDE IS GROUND
BOND PADS ARE 0.004 (0.100) SQUARE
BOND PAD SPACING, CTR-CTR: 0.006 (0.150)
BACKSIDE METALLIZATION: GOLD
BOND PAD METALLIZATION: GOLD
NO CONNECTION REQUIRED TO UNLABELED BOND PADS

Pad Description

Pad Number	Function	Description	Interface Schematic
1	LO Port	LO Port. This pad is AC coupled and matched to 50 ohm from 13 - 16.5 GHz	O
2	Vdd	Power supply for the LO Amplifier. An external RF bypass capacitor of 100 - 330 pF is required. A MIM border capacitor is recommended. The bond length to the capacitor should be as short as possible. The ground side of the capacitor should be connected to the housing ground.	
3	RF Port	RF Port. This pad is AC coupled and matched to 50 ohm from 26 - 33 GHz.	o— -
4	IF2	IF Port. This pad is DC coupled and should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. Any applied DC voltage to this pin will result in die non-function and possible die failure.	
5	IF1	IF Port. This pad is DC coupled and should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. Any applied DC voltage to this pin will result in die non-function and possible die failure.	

v00.0501

MIXERS - CHIP

GaAs MMIC SUB-HARMONICALLY PUMPED IRM MIXER 26 - 33 GHz

Notes: