

3¹² Series of Decoders

Received data are checked two times

Built-in oscillator needs only 5% resistor

VT goes high during a valid transmission

Easy interface with an RF or an infrared

Features

- Operating voltage: 2.4V~12V
- Low power and high noise immunity CMOS technology
- Low standby current
- Capable of decoding 12 bits of information Pair with Holtek's 3^{12} series of encoders
- 8~12 address pins
- 0~4 data pins
- Trinary address setting

Applications

- Burglar alarm system
- Smoke and fire alarm system
- Garage door controllers
- Car door controllers

transmission medium

Package information: refer to Selection Table

Minimal external components

- Car alarm system
- Security system
- Cordless telephones
- Other remote control systems

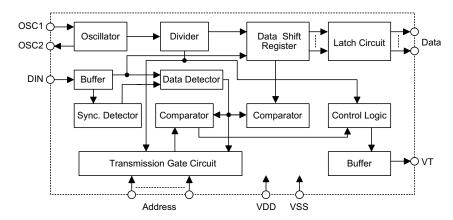
General Description

The 3¹²decoders are a series of CMOS LSIs for remote control system applications. They are paired with 3¹² series of encoders. For proper operation a pair of encoder/decoder with the same number of address and data format should be selected (refer to the encoder/decoder cross reference tables).

The 3^{12} series of decoders receive serial address and data from its corredponding series of encoders that are transmitted by a carrier using an RF or an IR transmission medium. Then it compares the serial input information twice continuously with its local address. If no errors

or unmatched codes are encountered, the input data codes are decoded and transferred to the output pins. The VT pin also goes high to indicate a valid transmission.

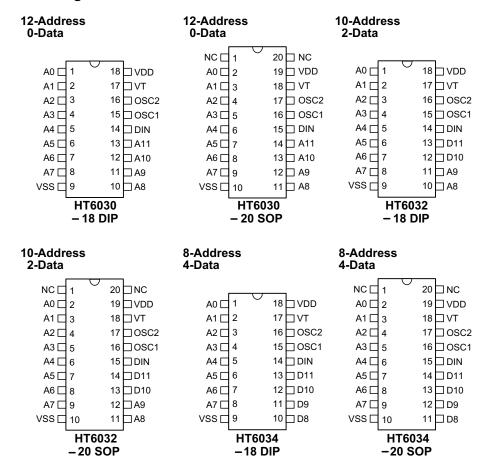
The 3¹² series of decoders are capable of decoding 12 bits of information that consists of N bits of address and 12-N bits of data. To meet various applications they are arranged to provide a number of data pins ranging from 0 to 4 and an address pin ranging from 8 to 12. Thus, various combinations of address/data number are available in different packages.


Selection Table

Function	Address		ata	VT	Oscillator	(D)	Daalaama	
Part No.	No.	No.	Туре	VI	Oscillator	Trigger	Package	
HT6030	12	0	_	√	RC oscillator	DIN active "Hi"	18 DIP/20 SOP	
HT6032	10	2	L	√	RC oscillator	DIN active "Hi"	18 DIP/20 SOP	
HT6034	8	4	L	√	RC oscillator	DIN active "Hi"	18 DIP/20 SOP	

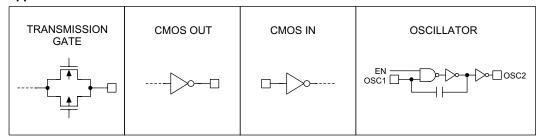
Note: Data type: L stands for latch type data output.

VT can be used as a momentary data output.


Block Diagram

Note: The address/data pins are available in various combinations (refer to the address/data table).

Pin Assignment



Pin Description

Pin Name	I/O	Internal Connection	Description
A0~A11	I	TRANSMISSION GATE	Input pins for address A0~A11 setting They can be externally set to VDD, VSS, or left open.
D8~D11	О	CMOS OUT	Output data pins
DIN	I	CMOS IN	Serial data input pin
VT	О	CMOS OUT	Valid transmission, active high
OSC1	I	OSCILLATOR	Oscillator input pin
OSC2	О	OSCILLATOR	Oscillator output pin
VSS	_	_	Negative power supply, ground
VDD	_	_	Positive power supply

Approximate internal connections

Absolute Maximum Ratings

Supply Voltage0.3V to 13V	Storage Temperature $-50^{\circ}\mathrm{C}$ to $125^{\circ}\mathrm{C}$
Input Voltage V_{SS} -0.3 to V_{DD} +0.3V	Operating Temperature20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

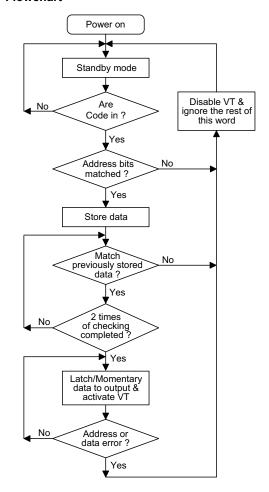
Electrical Characteristics

Ta=25°C

G 1 1	D. A	Te	est Conditions	3.41		3.6	Unit
Symbol	Parameter	$\mathbf{v}_{\mathbf{DD}}$	Conditions	Min.	Тур.	Max.	
$V_{ m DD}$	Operating Voltage			2.4	5	12	V
Т	Ct II- C	5V	0111-44	_	0.1	1	μΑ
$ m I_{STB}$	Standby Current	12V	Oscillator stops	_	2	4	μΑ
I_{DD}	Operating Current	5V	No load f _{OSC} =100kHz	_	250	500	μА
Т.	Data Output Source Current (D8~D11)	5V	V _{OH} =4.5V	-0.5	-1	_	mA
I_{O}	Data Output Sink Current (D8~D11)	5V	$V_{ m OL}$ =0.5 V	0.5	1	_	mA
	VT Output Source Current			-2	-4	_	mA
$ m I_{VT}$	VT Output Source Current Only For HT6033/35/45	5V	V_{OH} =4.5V	-0.35	-0.6	_	
TVT	VT Output Sink Current			1	2	_	
	VT Output Sink Current Only For HT6033/35/45		$V_{\rm OL}$ =0.5 V	0.35	0.6	_	
V_{IH}	"H" Input Voltage	5V		3.5		5	V
$ m V_{IL}$	"L" Input Voltage	5V		0		1	V
$f_{ m OSC}$	Oscillator Frequency	5V	R_{OSC} =91k Ω	_	100	_	kHz

Functional Description

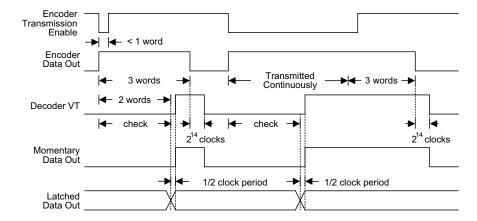
Operation


The 3^{12} series of decoders provide various combinations of address and data pins in different packages. They are paired with 3¹² series of encoders. The decoders receive data transmitted by the encoders and interpret the first N bits of the code period as addresses and the last 12-N bits as data (where N is the address code number). A signal on the DIN pin then activates the oscillator which in turn decodes the incoming address and data. The decoders check the received address twice continuously. If all the received address codes match the contents of the decoder's local address, the 12-N bits of data are decoded to activate the output pins and the VT pin is set high indicating a valid transmission. That will last until the address code is incorrect or no signal is received.

The output of the VT pin is high only when the transmission is valid. Otherwise it is always low.

Output type

The data outputs follow the encoders during a valid transmission and are then latched in this state until the next valid transmission occurs.

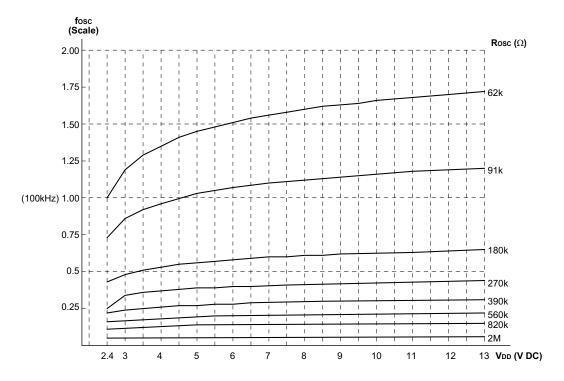

Flowchart

The oscillator is disabled in the standby state and activated as long as a logic "high" signal is applied to the DIN pin. i.e., the DIN pin should be kept "low" if there is no signal input.

Decoder timing

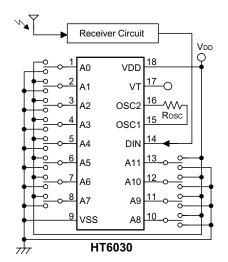
Encoder/Decoder cross reference tables

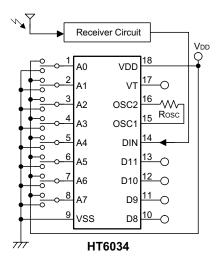
			VT		Package				
Part No.	Data Pins	Address Pins		Pair Encoder	Enc	oder	Decoder		
					DIP	SOP	DIP	SOP	
HT6030	0	12	√	HT6010	18, 20	20	18	20	
TITTEOOO	2	10	√	HT6010	18, 20	20	18	20	
HT6032				HT6012	18	20	18	20	
HT6034	4	8	√	HT6010	18, 20	20	10	20	
				HT6014	18	20	18		


Address/Data sequence

The following table describes the position of the address/data sequence for various models of the 3^{12} series of decoders. A correct device should be selected according to the requirements of individual address and data.

Don't No	Address/Data Bits											
Part No.	0	1	2	3	4	5	6	7	8	9	10	11
HT6030	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11
HT6032	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	D10	D11
HT6034	A0	A1	A2	A3	A4	A5	A6	A7	D8	D9	D10	D11


Oscillator frequency vs supply voltage



The recommended oscillator frequency is $f_{OSCD}\left(\text{decoder}\right)\cong 33\;f_{OSCE}\left(\text{encoder}\right)$

Application Circuits

Note: Typical infrared receiver: PIC-12043T/PIC-12043S (KODESHI CORP.) or LTM9052 (LITEON CORP.)

Typical RF receiver: JR-200 (JUWA CORP.)

RE-99 (MING MICROSYSTEM, U.S.A.)

Holtek Semiconductor Inc. (Headquarters)

No.3 Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.

Tel: 886-3-563-1999 Fax: 886-3-563-1189

Holtek Semiconductor Inc. (Taipei Office)

5F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C.

Tel: 886-2-2782-9635 Fax: 886-2-2782-9636

 $Fax: 886\text{-}2\text{-}2782\text{-}7128 \ (International \ sales \ hotline)$

Holtek Semiconductor (Hong Kong) Ltd.

RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong

Tel: 852-2-745-8288 Fax: 852-2-742-8657

Copyright @ 1999 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.