Mouse Controller

Features

- Low power dissipation
- Use 32.768K Hz crystal
- Crystal oscillator circuits on-chip
- 1200 baud rate serial output
- Power directly from RS-232C without external power supply

General Description

The HT6513 is a specially designed CMOS IC for mouse control applications. Capable of driving up to 3 key-switches and 4 photo-couplers directly into a standard RS-232C line, and it

- Three key-switches and four photo-couples inputs
- Key-in and key-release debounceinterval 52 ms
- The HT6513 can execute two different outputs with any of the key-switch inputs
- RXD with heavy NMOS output
can be operated without an external power supply. It is compatible with both Microsoft and Mouse systems with false entries being prevented by internal debounce circuits.

Pin Assignment

Block Diagram

Pin Description

Pin Name	I/O	Internal connection	Description
MS	1	-	When this pin is connected to VDD, then HT6513 is assigned to operate under the microsoft mode only. If the pin is connected to VSS, then HT6513 will operate under the mouse system mode. If MS pin is "floating", the HT6513 is on the power on initiation mode.
TEST	1	Pull-Low	F or IC test only. The test pin must be connected to VSS, while the chip is under normal usage.
OSCI	1	-	Oscillator input pin
OSCO	0	-	Oscillator output pin
RTS	1	-	The signal is sent by the mouse driver from the computer to select the mode. The HT6513 replies with the selected mode to the RXD line after the pulsesignal of the RTS line. RXD will send out "CD" H code under the microsoft mode.
$\overline{\mathrm{RXD}}$	0	NMOS Open Drain	There are 7 or 8 bits in each data byte. Using parallel-in and serial-out circuit, the data bytes are shifted out from bit 0 through the most significant bit. HT6513 will transmit the data when the status of the three key-switches or the state of the horizontal counter or vertical counter change.
VSS	I	-	Negative power supply

Pin Name	1/0	Internal connection	Description
$\begin{aligned} & \text { R } \\ & \text { M } \\ & \text { L } \end{aligned}$	1	Pull-Low	Three key-switches have seven different combinations in total. Both key-pressed and key-released signals will be sent accompanied with horizontal and vertical state. The status of the key-switches, the values of horizontal or vertical counters will be present at RXD and $\overline{\text { RXD }}$. The debounce interval for both key-press and key-rel ease is 13 ms .
$\begin{aligned} & \mathrm{X} 1 \\ & \mathrm{X} 2 \\ & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	1	-	Four photo-couplers signals denote UP, DOWN, LEFT, and RIGHT state. During the scaning period, as long as the photo-couplers change their states, the value of vertical or horizontal counter will increase or decrease accordingly.
VDD	1	-	Position power supply

Approximate Internal connection circuits
(Mechanicl mouse)

X1/X2/Y1/Y2 Input pin I/V curve (optomechanical mouse)

Absolute Maximum Ratings

Supply Voltage
-0.3 V to 7 V
Storage Temperature. \qquad $-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Input Voltage.
$\mathrm{V}_{\mathrm{ss}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3$
Operating Temperature.
$-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
D.C. Characteristics
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test condition		Min.	Typ.	Max.	Unit
		VDD	Condition				
V ${ }_{\text {D }}$	Operating voltage	-	-	4.0	5.1	6.1	V
IDD	Operating current	5.6V	No load	-	400	760	$\mu \mathrm{A}$
VIL	X1, X2, Y1, Y 2 Input low voltage	5.6 V	-	0	-	1.1	V
V IH	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1, \mathrm{Y} 2$ Input high voltage	5.6 V	-	1.8	-	5.6	V
$\mathrm{V}_{\text {ILI }}$	Input low voltage, other pin	5.6 V	-	0	-	1	V
$\mathrm{V}_{\text {IH1 }}$	Input high voltage, other pin	5.6 V	-	3.5	-	5.6	V
Iol	$\overline{\mathrm{RXD}}$ output sink current	5.6 V	$\mathrm{V}_{\mathrm{OL}}=0.56 \mathrm{~V}$	3.5	6	-	mA
Vor	$\overline{\mathrm{RXD}}$ high-level output voltage	-	-	-	-	16	V
R PL	Pull-low resistance	5.6 V	L, M, R key-switches	65	-	200	K Ω

A.C. Characteristics
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition		Min.	Typ.	Max.	Unit
		V ${ }_{\text {DD }}$	Condition				
fsys	System Clock	5.6 V	Crystal Oscillator	30.8	32.768	34.2	KHz
ff_{P}	Photo-Couple input frequency	5.6 V	-	-	-	8.2	KHz
f_{N}	Photo-Couple operation frequency	5.6V	-	0	-	8	KHz
tKD	Key debounce	5.6V	-	-	52	-	ms
t_{mS}	Transmission time	5.6V	mouse system (1200 bps)	-	41.3	-	ms
t_{MI}	Transmission time	5.6 V	microsoft (1200 bps)	-	24.8	-	ms
ts	Start bit time	5.6 V	(1200 bps)	-	0.85	-	ms
to	Data bit time	5.6 V	(1200 bps)	-	0.82	-	ms
t_{p}	Stop bit time	5.6 V	(1200 bps)	-	0.82	-	ms
trd	Mode code delay Time ($\mathrm{f}_{\mathrm{SYS}}=32.768 \mathrm{~K} \mathrm{~Hz}$)	5.6V	(1200 bps)	11.9	-	14	ms
t_{R}	Rising edge crossed width	5.6 V	-	31	-	-	$\mu \mathrm{S}$
t_{F}	Falling edge crossed width	5.6 V	-	31	-	-	$\mu \mathrm{S}$

HT6513

Function Descriptions

Mouse system mode

Any change of state of the mouse key-switches or photo-couplers will be detected by the HT6513 and transmitted over the RS-232C. The mouse system protocol will send five words at a 1200 baud rate with each word containing 10 bits, one start bit, one stop bit and eight data bits. The first, second and third words corre-
spond to key switch-status, horizontal counter and vertical counter respectively. The autospeed sensing circuits ensure detection of higher mouse speeds resulting in the use of the 4th and 5th words for extra horizontal and vertical overflow counts respectively. For lower mouse speeds the 4th and 5th words remain at zero.

Output word format:

Bit No.	Mouse system word structures								
	7	6	5	4	3	2	1	0	
1st word	1	0	0	0	0	L' $^{\prime}$	M $^{\prime}$	R $^{\prime}$	
2nd word	H7	H6	H5	H4	H3	H2	H1	H0	
3rd word	V7	V6	V5	V4	V3	V2	V1	V0	
4th word	EH7	EH6	EH5	EH4	EH3	EH2	EH1	EH0	
5th word	EV7	EV6	EV5	EV4	EV3	EV2	EV1	EV0	

': denotes complement
$\mathrm{H} 0 \sim \mathrm{H} 7$: The values of horizontal counter.
V0~V7: The values of vertical counter.
EH0~EH7: The values of extra horizontal counter.
EV0~EV7: The values of extra vertical counter.

Microsoft system mode

In the microsoft mode only 3 words are transmitted with each word divided into one start bit, seven data bits and two stop bits. Note that only 2 switch operation is available with the " M " switch being redundant in this mode. The " L " and " R " switch status together with the two most significant bits of both vertical and horizontal counters are transferred in this first word. The second and third word represent the horizontal and vertical counters respectively. Note that this vertical data is recorded in 2's complement format.

Output word format:

Bit No.	Mouse system word structures						
	6	5	4	3	2	1	0
$\begin{gathered} \text { 1st } \\ \text { word } \end{gathered}$	1	L	R	V7'	V6'	H7	H6
2nd word	0	H5	H4	H3	H2	H1	H0
3rd word	0	V5'	V4'	V3'	V2'	V1'	V0'

Timing Diagrams

Word structure

Mouse RXD	Were 1 and			4th word	5th word
	1st word	2nd word	3 rd word		
Microsoft RXD	1st word	2nd word	3rd word		

Key output

Bit Structure

Mode select timing

Photo - coupler crossed width

Application Circuit

$\overline{\text { RXD output }}$

The $\overline{\mathrm{RXD}}$ pin is NMOS open drain output.

