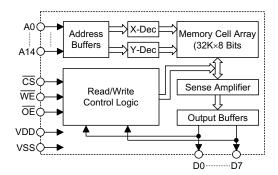


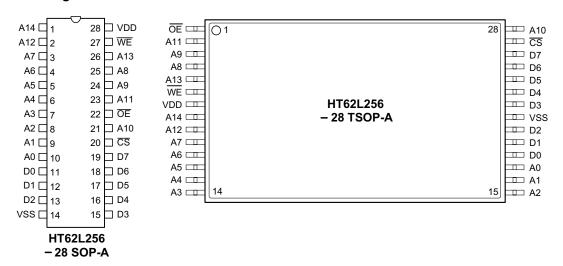
CMOS 32K×8 Low Power SRAM

Features

- Operation voltage: 2.7V~3.3V
- Low power consumption:
 - Operating current: 20mA max.
 - Standby current: 2μA
- · High speed access time: 70ns
- · Input levels are LVTTL-compatible


- · Automatic power down when chip is deselected
- Three state outputs
- · Fully static operation
- Data retention supply voltage as low as 2.0V
- Easy expansion with CS and OE options
- 28-pin SOP/TSOP package

General Description


The HT62L256 is a 262,144-bit static random access memory organized into 32,768 words by 8 bits and operating from a low power range of 2.7V to 3.3V supply voltage. It is fabricated with high performance CMOS process that provides both high speed and low power feature with typical standby current of $2\mu A$ and maximum access time of 70ns.

The HT62L256 has an automatic power down feature, reducing the power consumption significantly when chip is deselected. The HT62L256 supports the JEDEC standard 28-pin SOP and TSOP package.

Block Diagram

Pin Assignment

Pin Description

Pin Name	I/O	Description	
A0~A14	I	Address input pins	
WE	I	Write enable signal pin, active LOW	
ŌĒ	I	Output enable signal pin, active LOW	
CS	I	Chip select signal pin, active LOW	
D0~D7	I/O	Data input and output signal pins	
VDD	_	Positive power supply	
VSS	_	Negative power supply, ground	

Absolute Maximum Rating

V _{DD} to VSS –0.5V to +3.6V	Operating Temperature, T _{OP} 0°C to 70°C
IN, IN/OUT Voltage to V_{SS} 0.5V to $V_{\text{DD}}\text{+}0.5\text{V}$	Storage Temperature (Plastic), Tstg –55°C to 125°C
Power Consumption, PT0.7W	1

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

Ta=25°C, V_{DD} =3.0V \pm 10%, T_{OP} =0°C to 70°C

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Operating Voltage	_	2.7	3.0	3.3	V
V _{IL}	Input Low Voltage	_	_	0	0.4	V
V_{IH}	Input High Voltage	_	0.7×V _{DD}		_	V
I _{LI}	Input Leakage Current	V _{IN} =0 to V _{DD}	_	_	1	μА
I _{LO}	Output Leakage Current	CS=V _{IH} or OE=V _{IH} , V _{OUT} =0 to V _{DD}	_	_	1	μА
V_{OL}	Output Low Voltage	V _{DD} =Max, I _{OL} =2mA	_	_	0.3	V
V _{OH}	Output High Voltage	V _{DD} =Min, I _{OH} =-1mA	V _{DD} -0.3	_	_	V
I _{DD}	Operating Current	CS=V _{IH} , I _{OUT} =0mA	_	_	20	mA
I _{SB1}	Standby Current	CS=V _{IH} , I _{OUT} =0mA	_	_	50	μА
I _{SB2}	Power Down Supply Current	$\overline{\text{CS}} \ge V_{DD} - 0.2V, V_{IN} \ge 0V$		2	10	μА

A.C. Characteristics

Ta=25°C, V_{DD} =3.0 $V\pm10\%$

Symbol	Parameter	Min.	Тур.	Max.	Unit
Read cycle					
t _{RC}	Read Cycle Time	70	_	_	ns
t _{AA}	Address Access Time	_	_	70	ns
t _{ACS}	Chip Selection Access Time	_	_	70	ns
t _{AOE}	Output Enable to Valid Outputs	_	_	35	ns
t _{CLZ*}	Chip Selection to Output in Low-Z	10	_	_	ns
t _{OLZ} *	Output Enabled to Output in Low-Z	5	_	_	ns
t _{CHZ} *	Chip Deselected to Output in High-Z	_	_	25	ns
t _{OHZ} *	Output Disable to Output in High-Z	_	_	25	ns
t _{OH}	Output Hold from Address Change	10	_	_	ns
Write cyc	le		1		1
t _{WC}	Write Cycle Time	70	_	_	ns
t _{CW}	Chip Selection to End of Write	60	_	_	ns
t _{AS}	Address Setup Time	0	_	_	ns
t _{AW}	Address Valid to End of Write	60	_	_	ns
t _{WP}	Write Pulse Width	50	_	_	ns
t _{WR}	Write Recovery Time	0	_	_	ns
t _{WHZ}	Write to Output in High–Z	_	_	20	ns
t_{DW}	Data Valid to End of Write	30	_	_	ns
t _{DH}	Data Hold from End of Write	0	_	_	ns
t _{OW}	Output Active from End of Write	5	_	_	ns

Note: 1. A write cycle occurs during the overlap of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$

- 2. $\overline{\sf OE}$ may be both high and low in a write cycle
- 3. t_{AS} is specified from \overline{CS} or $\overline{WE},$ whichever occurs last
- 4. t_{WP} is an overlap time of a low $\overline{\text{CS}}$ and a low $\overline{\text{WE}}$
- 5. $t_{WR},\,t_{DW}$ and t_{DH} are specified from \overline{CS} or $\overline{WE},$ whichever occurs first
- $6.\,t_{WHZ}$ is specified by the time when DATA OUT is floating and not defined by the output level
- 7. When the I/O pins are in data output mode, they should not be forced with inverse signals

A.C. Test Conditions

Item	Conditions
Input Pulse Level	0V to 3V
Input Rise and Fall Time	5ns
Input and Output Timing Reference Level	1.5V
Output Load	See figures below

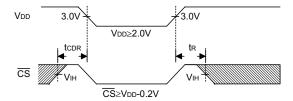
+1.5V $1.8k\Omega$ 1/0 $-1.8k\Omega$ 1/0 $-1.8k\Omega$ *Including scope and jig

Output load

Output load for tclz, tolz, tchz, twhz and tow

Functional Description

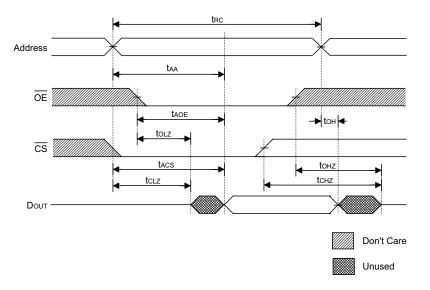
Operation truth table

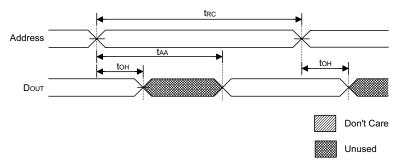

CS	ŌĒ	WE	Mode	D0~D7
Н	X	X	Standby	High-Z
L	Н	Н	Output Disable	High-Z
L	L	Н	Read	Dout
L	X	L	Write	Din

Data retention characteristics

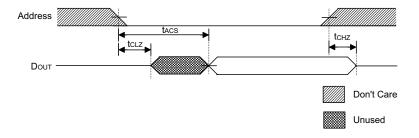
Ta=-40°C to 85°C

Symbol	Parameter	Conditions	Min.	Max.	Unit
V _{DR}	V _{DD} for Data Retention	$\label{eq:control_control} \boxed{ \overline{CS} \ge V_{DD} - 0.2V } \\ V_{IN} \ge V_{DD} - 0.2V \text{ or } V_{IN} \le 0.2V $	2.0	3.3	V
I _{CCDR}	Data Retention Current	$\overline{CS} \ge V_{DD} - 0.2V$ $V_{IN} \ge V_{DD} - 0.2V \text{ or } V_{IN} \le 0.2V$	_	2	μА
t _{CDR}	Chip Disable Data Retention Time	See retention timing	0	_	ns
t _R	Operation Recovery Time	See retention timing	t _{RC} *		ns


Low V_{DD} data retention timing

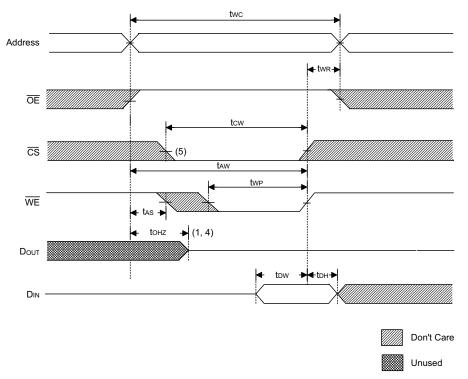


Timing Diagrams

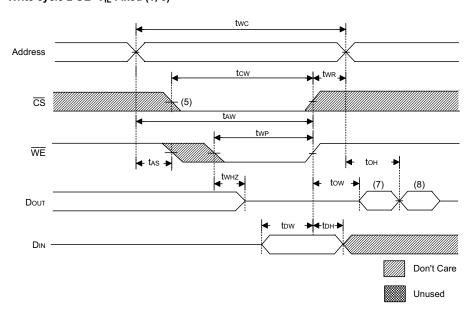

Read cycle 1 output enable controlled (1)

Read cycle 2 address controlled (1, 2, 4)

Read cycle 3 chip select controlled (1, 3, 4)



Note: 1. WE is high for read cycle

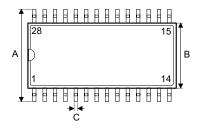

- 2. Device is continuously enabled, $\overline{\text{CS}} = V_{\text{IL}}$
- 3. Address is valid prior to or coincident with the $\overline{\text{CS}}$ transition low
- 4. $\overline{\text{OE}}$ =V_{IL}
- 5. Transition is measured at $\pm 500 \text{mV}$ from the steady state

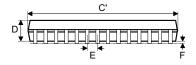
Write cycle 1 OE clock (1)

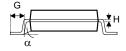
Write cycle 2 OE=V_{IL} Fixed (1, 6)

Preliminary

HT62L256

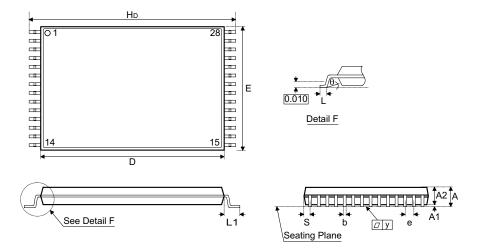

Note:


- 1. WE must be high during all address transitions
- 2. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and a low \overline{WE}
- 3. t_{WR} is measured from the earliest high going edge of \overline{CS} or \overline{WE} to the end of the write cycle
- 4. During this period, I/O pins are in the output state, so the input signals of opposite phase to the outputs should not be applied.
- 5. If the $\overline{\text{CS}}$ low transition occurs simultaneously or after with the $\overline{\text{WE}}$ low transition, the outputs remain in a high impedance state
- 6. \overline{OE} is continuously low (\overline{OE} =V_{IL})
- 7. $\ensuremath{D_{\text{OUT}}}$ is at the same phase as the write data of this write cycle
- 8. D_{OUT} is the read data of the next address
- 9. If CS is low during this period, then the I/O pins are in the output state and the data input signals of the opposite phase to the outputs should not be applied
- 10. Transition is measured at $\pm 500 \text{mV}$ from the steady state



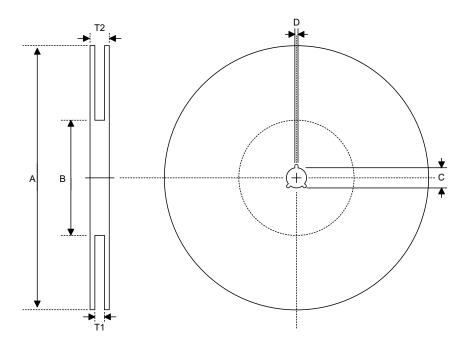
Package Information

28-pin SOP (330mil) outline dimensions



Cumbal	Dimensions in mil			
Symbol	Min.	Nom.	Max.	
А	453	_	477	
В	326	_	336	
С	14	_	20	
C'	700	_	728	
D	92	_	104	
E	_	50	_	
F	4	_	_	
G	32	_	38	
Н	4	_	12	
α	0°	_	10°	

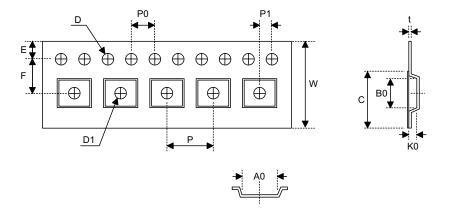
28-pin TSOP (8×13.4) outline dimensions



Cumahal	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
А	_	_	1.25	
A1	0.08	_	0.18	
A2	0.95	_	1.05	
b	_	0.20	_	
D	11.70	_	11.90	
H _D	13.20	_	13.60	
Е	7.90	_	8.10	
е	_	0.55	_	
L	_	0.50	_	
L1	_	0.8	_	
θ	0°	_	5°	

Product Tape and Reel Specifications

Reel dimensions



SOP 28E (330mil)

Symbol	Description	Dimensions in mm
Α	Reel Outer Diameter	330±1.0
В	Reel Inner Diameter	62±1.5
С	Spindle Hole Diameter	13.0+0.5 -0.2
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	24.8+0.3 -0.2
T2	Reel Thickness	30.2±0.2

Carrier tape dimensions

SOP 28E (330mil)

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	24.0+0.3 -0.1
Р	Cavity Pitch	16.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	11.5±0.1
D	Perforation Diameter	1.55+0.1
D1	Cavity Hole Diameter	1.5+0.25
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	12.32±0.1
В0	Cavity Width	18.8±0.1
K0	Cavity Depth	3.0±0.1
t	Carrier Tape Thickness	0.3±0.05
С	Cover Tape Width	21.3

Holtek Semiconductor Inc. (Headquarters) No.3, Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan

Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Sales Office)

11F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan

Tel: 886-2-2782-9635 Fax: 886-2-2782-9636

Fax: 886-2-2782-7128 (International sales hotline)

Holtek Semiconductor (Shanghai) Inc.

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China

Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor (Hong Kong) Ltd.

RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong

Tel: 852-2-745-8288 Fax: 852-2-742-8657

Holmate Semiconductor, Inc.

48531 Warm Springs Boulevard, Suite 413, Fremont, CA 94539

Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com

Copyright © 2002 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.