January 2001

DESCRIPTION

The HI-8105 \& HI-8106 are silicon gate CMOS devices designed for 'glue' logic applications. They are simple 16 stage dividers with programmable division. The HI-8105 has a one pin oscillator while the $\mathrm{HI}-8106$ receives a clock input. The one pin oscillator frequency is set by a resistor to VDD and the capacitance to AC ground at the pin.

The wafer processing enables operation to 1 volt guaranteed. The chip is designed for low power performance. As a result the maximum output frequency is 5 MHz while the internal logic will run considerably higher.

A companion version, HI-8107, features a crystal oscillator circuit and a 8 stage programmable divider.

PIN CONFIGURATION

SUPPLY VOLTAGES

$V D D=1 V$ to 5 V
FUNCTION TABLE

A3	A2	A1	A0	OUT
0	0	0	0	DIV by 2
0	0	0	1	4
0	0	1	0	8
0	0	1	1	16
0	1	0	0	32
0	1	0	1	64
0	1	1	0	128
0	1	1	1	256
1	0	0	0	512
1	0	0	1	1024
1	0	1	0	2048
1	0	1	1	4096
1	1	0	0	8192
1	1	0	1	16384
1	1	1	0	32768
1	1	1	1	65536

PIN DESCRIPTION TABLE

PIN	SYMBOL	FUNCTION	DESCRIPTION
1	VDD	SUPPLY	POSITIVE SUPPLY, 1V TO 5V
2	VSS	SUPPLY	GROUND
3	OUT	LOGIC OUTPUT	CMOS
4	A0	LOGIC INPUT	CMOS
5	A1	LOGIC INPUT	CMOS
6	A2	LOGIC INPUT	CMOS
7	A3	LOGIC INPUT	CMOS
8	OSC (8105)	INPUT/OUTPUT	RC - CONNECT TO VDD
8	CLK (8106)	LOGIC INPUT	CMOS

FUNCTIONAL DESCRIPTION

The HI8105 and HI-8106 are 16 stage serial counters. Each stage's Q is input to a 1 of 16 decoder. A 4 bit code at pins 4 through 7 selects which stage is routed to the output at pin 3. The counter clocks on the negative transition of pin 8 .

Figure 1 shows the oscillator circuit of the $\mathrm{HI}-8105$. The charging time is controlled by a delay circuit and the hystersis window. The window is typically 0.6 V wide at $\mathrm{VDD}=5.0 \mathrm{~V}$.

Figure 2 shows the bonding option which omits the N device pulldown and thereby allows the simple clock input of the HI-8106.

APPLICATION INFORMATION

The HI-8105 oscillator frequency is set by selecting a resistor and capacitor to apply at pin 8 . Typical parameters at room temperature are:

OSCILLATOR FREQUENCY DATA

	$\mathrm{Co}=100 \mathrm{pF}$		$\mathrm{Co}=1 \mathrm{nF}$	
Ro	$\mathrm{VDD}=5 \mathrm{~V}$	$\mathrm{VDD}=1 \mathrm{~V}$	$\mathrm{VDD}=5 \mathrm{~V}$	$\mathrm{VDD}=1 \mathrm{~V}$
$1 \mathrm{~K} \Omega$	7.80 MHz	-	2.12 MHz	-
$3 \mathrm{~K} \Omega$	4.22 MHz	914 KHz	1.10 MHz	231 KHz
$10 \mathrm{~K} \Omega$	1.46 MHz	464 KHz	359 KHz	100 KHz
$100 \mathrm{~K} \Omega$	165 KHz	64 KHz	39.6 KHz	12 KHz

FIGURE 1 - HI-8105 Oscillator
 clock

ORDERING INFORMATION

PART NUMBER	$\begin{aligned} & \hline \text { PACKAGE } \\ & \text { DESCRIPTION } \end{aligned}$	TEMPERATURE RANGE	FLOW	$\begin{aligned} & \text { BURN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \hline \text { LEAD } \\ & \text { FINISH } \end{aligned}$
HI-8105PDI	8 PIN PLASTIC DIP	$-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$	I	NO	SOLDER
HI-8105PDT	8 PIN PLASTIC DIP	$-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$	T	NO	SOLDER
HI-8105PSI	8 PIN PLASTIC NARROW BODY SOIC	$-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$	I	NO	SOLDER
HI-8105PST	8 PIN PLASTIC NARROW BODY SOIC	$-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$	T	NO	SOLDER
HI-8105CDI	8 PIN CERAMIC SIDE BRAZED DIP	$-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$	I	NO	GOLD
HI-8105CDT	8 PIN CERAMIC SIDE BRAZED DIP	$-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$	T	NO	GOLD
HI-8105CDM	8 PIN CERAMIC SIDE BRAZED DIP	$-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$	M	YES	SOLDER
HI-8105CRI	8 PIN CERDIP	$-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$	I	NO	SOLDER
HI-8105CRT	8 PIN CERDIP	$-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$	T	NO	SOLDER
HI-8105CRM	8 PIN CERDIP	$-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$	M	YES	SOLDER

Note: The HI-8106 is available in the same options

ABSOLUTE MAXIMUM RATINGS

Voltages referenced to Ground

Supply voltages VCC. $.7 \mathrm{~V}$	
DC current per input pin............... $\pm 10 \mathrm{~mA}$	
Power dissipation at $25^{\circ} \mathrm{C}$.	500 mW
Solder Temperature $275^{\circ} \mathrm{C}$ for 10 sec	
Storage Temperature........ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

RECOMMENDED OPERATING CONDITIONS

Supply Voltages
VCC.

$$
1 \mathrm{~V} \text { to } 5.25 \mathrm{~V}
$$

Temperature Range
Industrial Screening........ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Hi-Temp Screening
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military Screening $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

DC ELECTRICAL CHARACTERISTICS

VDD-VSS $=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
operating voltage	VDD-VSS		1.0		5.0	volts
logic input voltage high low	$\begin{aligned} & V_{\text {IH }} \\ & V_{\text {IL }} \end{aligned}$	pins 4,5,6,7	3.5	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	1.5	volts volts
logic input current high low	$\begin{aligned} & I_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{IL}} \end{aligned}$	pins 4,5,6,7	-1.0		1.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
logic output drive current one zero	$\begin{aligned} & \mathrm{I} \mathrm{OH} \\ & \mathrm{I} \mathrm{OL} \end{aligned}$	pins 3 Vout=3.5V Vout=0.8V	1.7	$\begin{array}{r} -2.4 \\ 2.8 \end{array}$	-1.6	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Current drain no load not clocking HI-8105 operating HI-8106 operating	$\begin{aligned} & \mathrm{IDD}_{1} \\ & \mathrm{IDD}_{2} \\ & \mathrm{IDD}_{3} \end{aligned}$	pins $4,5,6,7$ all at VSS and pin $8=$ VSS $\mathrm{Ro}=1 \mathrm{~K} \Omega$ and $\mathrm{Co}=100 \mathrm{pF}$ clocking pin 8 at 10 MHz		$\begin{aligned} & 0.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Current drain no load at 1.0 V HI-8105	IDD_{4}	pins 4,5,6,7 all at VSS and $\mathrm{Ro}=10 \mathrm{~K} \Omega$ and $\mathrm{Co}=100 \mathrm{pF}$		38	70	$\mu \mathrm{A}$

8-PIN PLASTIC DIP

8-PIN PLASTIC SMALL OUTLINE (SOIC) - NB (Narrow Body)

Package Type: 8HN

Detail A

8-PIN CERAMIC SIDE-BRAZED DIP

8-PIN CERDIP

Package Type: 8D

