

2-26.5 Medium Power Amplifier

Technical Data

HMMC-5027

Features

• Wide-Frequency Range: 2-26.5 GHz

Moderate Gain: 7 dB
Gain Flatness: 1 dB

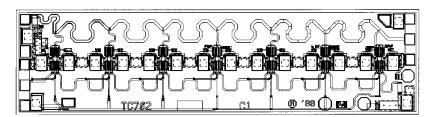
• Return Loss: Input -13 dB Output -11 dB

• Low-Frequency Operation Capability: < 2 GHz

• Gain Control: 30 dB Dynamic Range

Medium Power:

 $20\,\mathrm{GHz}$: $P_{-1\mathrm{dB}}$: $22\,\mathrm{dBm}$


P_{sat}: 24 dBm

 $26.5\,\mathrm{GHz}\colon\ P_{\text{-1dB}}\!\colon\,19\,\mathrm{dBm}$

P_{sat}: 21 dBm

Description

The HMMC-5027 is a broadband GaAs MMIC Traveling Wave Amplifier designed for medium output power and moderate gain over the full 2 to 26.5 GHz frequency range. Seven MESFET cascode stages provide a flat gain response, making the HMMC-5027 an ideal wideband power block. Optical lithography is used to produce gate lengths of ≈ 0.5 mm. The HMMC-5027 incorporates advanced MBE technology, Ti-Pt-Au gate metallization, silicon nitride passivation, and polyimide for scratch protection.

Chip Size: $2980 \times 770 \,\mu\text{m} (117.3 \times 30.3 \,\text{mils})$

Chip Size Tolerance: $\pm 10 \mu m (\pm 0.4 mils)$

Chip Thickness: $127 \pm 15 \,\mu\text{m} (5.0 \pm 0.6 \,\text{mils})$

Pad Dimensions: $75 \times 75 \mu m (2.95 \times 2.95 \text{ mils})$, or larger

Absolute Maximum Ratings[1]

Symbol	Parameters/Conditions	Units	Min.	Max.
V_{DD}	Positive Drain Voltage	V		8.0
I_{DD}	Total Drain Current	mA		300
V_{G1}	First Gate Voltage	V	-5	0
I_{G1}	First Gate Current	mA	-1	+1
V_{G2}	Second Gate Voltage	V	-2.5	+5
I_{G2}	Second Gate Current	mA	-25	
P_{DC}	DC Power Dissipation	watts		2.4
P _{in}	CW Input Power	dBm		23
T_{ch}	Operating Channel Temp.	°C		+150
T _{case}	Operating Case Temp.	°C	-55	
T_{STG}	Storage Temperature	°C	-65	+165
T_{max}	Maximum Assembly Temp. (for 60 seconds maximum)	°C		+300

Note:

1. Operation in excess of any one of these conditions may result in permanent damage to this device. $T_A=25\,^{\circ}\!\text{C}$ except for T_{ch} , T_{STG} , and T_{max} .

6-47 5965-5447E

HMMC-5027 DC Specifications/Physical Properties [1]

Symbol	Parameters and Test Conditions	Units	Min.	Тур.	Max.
$I_{ m DSS}$	Saturated Drain Current ($V_{DD} = 8.0 \text{ V}, V_{G1} = 0.0 \text{ V}, V_{G2} = \text{open circuit}$)	mA	200	300	500
$V_{\rm p}$	First Gate Pinch-off Voltage (V_{DD} = 8.0 V, I_{DD} = 30 mA, V_{G2} = open circuit)	V	-2.2	-1.3	5
V_{G2}	Second Gate Self-Bias Voltage $(V_{DD} = 8.0 \text{ V}, V_{G1} = 0.0 \text{ V})$	V		$\begin{array}{c} 1.8 \\ (0.27\mathrm{xV_{DD}}) \end{array}$	
I _{DSOFF} (V _{G1})	First Gate Pinch-off Current $(V_{DD} = 8.0 \text{ V}, V_{G1} = -3.5 \text{ V}, V_{G2} = \text{open circuit})$	mA		7	
I _{DSOFF} (V _{G2})	Second Gate Pinch-off Current $(V_{DD} = 5.0 \text{ V}, V_{G1} = 0.0 \text{ V}, V_{G2} = -3.5 \text{ V})$	mA		10	
$\theta_{ ext{ch-bs}}$	Thermal Resistance ($T_{backside} = 25^{\circ}C$)	°C/W		28	

Note:

1. Measured in wafer form with T_{chuck} = 25°C. (Except $\theta_{ch\text{-}bs\text{-}})$

 $\begin{array}{l} \textbf{HMMC-5027 RF Specifications}^{[1]}, \\ \textbf{T}_{op} = 25^{\circ}\textbf{C}, \textbf{V}_{D1} = \textbf{V}_{D2} = 5\,\textbf{V}, \textbf{V}_{G1} = \textbf{V}_{G2} = \text{Open}, \textbf{Z}_{O} = 50\,\Omega, \text{unless otherwise noted} \end{array}$

Symbol	Parameters and Test Conditions	Units	Min.	Тур.	Max.
BW	Guaranteed Bandwidth ^[2]	GHz	2		26.5
S ₂₁	Small Signal Gain	dB	6	7	
$\Delta \mathrm{S}_{21}$	Small Signal Gain Flatness	dB		±0.8	
RLin	Input Return Loss	dB		-13	-10
RLout	Output Return Loss	dB		-11	-10
S_{12}	Reverse Isolation	dB		-28	-25
P _{-1dB}	Output Power @ 1dB Gain Compression	dBm	16.5	19	
P _{sat}	Saturated Output Power	dBm	18.5	21	
H_2	Second Harmonic Power Level $(2 < f_0 < 20)$ $[P_0(f_0) = 21 \text{ dBm or } P_{-1dB}, \text{ whichever is less}]$	dBc		-21	-18
H_3	Third Harmonic Power Level $(2 < f_0 < 20)$ $[P_0(f_0) = 21 \text{ dBm or } P_{-1\text{dB}}, \text{ whichever is less}]$	dBc		-32	-18
NF	Noise Figure	dB		11	

^{1.} Small-signal data measured in wafer form with $T_{chuck} = 25$ °C. Large-signal data measured on individual devices mounted in an HP83040 Series Modular Microcircuit Package at $T_A = 25$ °C.

^{2.} Performance may be extended to lower frequencies through the use of appropriate off-chip circuitry. Upper corner frequency $\sim 30\,\mathrm{GHz}$.

HMMC-5027 Applications

The HMMC-5027 series of traveling wave amplifiers are designed for use as general purpose wideband power stages in communication systems and microwave instrumentation. They are ideally suited for broadband applications requiring a flat gain response and excellent port matches over a 2 to 26.5 GHz frequency range. Dynamic gain control and low-frequency extension capabilities are designed into these devices.

Biasing and Operation

These amplifiers are biased with a single positive drain supply (V_{DD}) and a single negative gate supply (V_{G1}) . The recommended bias conditions for the HMMC-5027 are $V_{DD}=8.0 \, V$, $I_{DD}=250 \, \text{mA} \, \text{or I}_{DSS}$, whichever is less. To achieve this drain current level, V_{G1} is typically biased between 0 V and -0.6 V. No other

bias supplies or connections to the device are required for 2 to $26.5~\mathrm{GHz}$ operation. The gate voltage (V_{G1}) MUST be applied prior to the drain voltage (V_{DD}) during power up and removed after the drain voltage during power down. See Figure 3 for assembly information.

The auxiliary gate and drain contacts are used only for lowfrequency performance extension below≈ 1.0 GHz. When used, these contacts must be AC coupled only. (Do not attempt to apply bias to these pads.) The second gate (V_{G2}) can be used to obtain 30 dB (typical) dynamic gain control. For normal operation, no external bias is required on this contact and its self-bias potential is between +1.5and +2.5 volts. Applying an external bias between its open circuit potential and -2.5 volts will adjust the gain while maintaining a good input/output port match.

Assembly Techniques

Solder die-attach using a fluxless AuSu solder preform is the recommended assembly method. Gold thermosonic wedge bonding with 0.7 mil diameter Au wire is recommended for all bonds. Tool force should be 22 ± 1 gram, stage temperature should be $150\pm2^{\circ}\mathrm{C}$, and ultrasonic power and duration should be 64 ± 1 dB and 76 ± 8 msec, respectively. The bonding pad and chip backside metallization is gold.

For more detailed information see HP application note #999 "GaAs MMIC Assembly and Handling Guidelines."

GaAs MMICs are ESD sensitive. Proper precautions should be used when handling these devices.

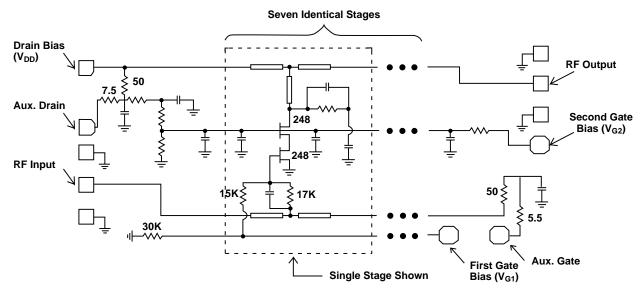
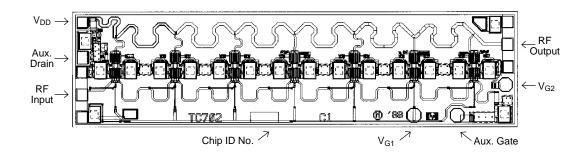



Figure 1. HMMC-5027 Schematic.

Notes: FET gate periphery in microns. All resistors in ohms. (Ω) , (or in K-ohms, where indicated)

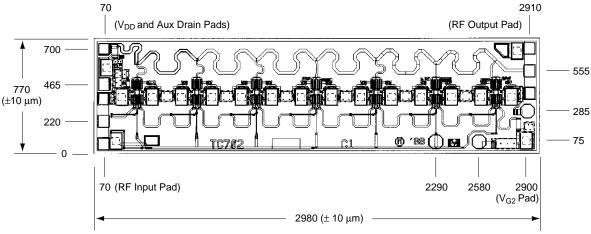


Figure 2. HMMC-5027 Bonding Pad Locations.

Notes:

All dimensions in microns. Rectangular Pad Dim: 75 x 75 μ m. Octagonal Pad Dim: 90 μ m dia. All other dimensions $\pm 5~\mu$ m (unless otherwise noted). Chip thickness: 127 \pm 15 μ m.

1.5 mil dia.Gold Wire Bond to ≥15 nF DC Feedthru ≥68 pF Capacitor Input and Output Thin Film Circuit with ≥8 pF DC Blocking Capacitor 4 nH Inductor (1.0 mil Gold Wire Bond with length of 200 mils) Gold Plated Shim 2.0 mil Trace Offset nom. gap $168 \, \mu m$ (6.6 mils) V_{DD} ОИТ TC702 IIIN Trace Offset 168 μm 2.0 mil (6.6 mils) nom. gap \bigcirc Bonding Island 0.7 mil dia. Gold Bond Wire (Length NOT important) 1.5 mil dia.Gold Wire Bond to ≥15 nF DC Feedthru

Figure 3. HMMC-5027 Assembly Diagram.

Note:

Total offset between RF input and RF output pad is 335 μm (13.2 mils).

HMMC-5027 Typical Performance



Figure 4. Typical Gain and Reverse Isolation vs. Frequency.

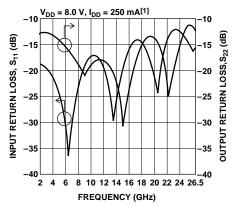


Figure 5. Typical Input and Output Return Loss vs. Frequency.

Typical Scattering Parameters^[1], $(T_{chuck} = 25 ^{\circ}C, V_{DD} = 8.0 \text{ V}, I_{DD} = 250 \text{ mA or } I_{DSS}, \text{ whichever is less, } Z_{in} = Z_o = 50 \Omega$

Freq.		\mathbf{S}_{11}			\mathbf{S}_{21}			\mathbf{S}_{12}			\mathbf{S}_{22}	
GHz	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang
2.0	-18.7	0.116	-139.5	-57.7	0.0013	-165.2	8.7	2.717	116.6	-13.0	0.223	173.5
3.0	-20.1	0.099	-159.0	-54.9	0.0018	144.2	8.4	2.635	94.8	-13.0	0.224	150.0
4.0	-21.5	0.084	-175.7	-52.0	0.0025	154.0	8.3	2.612	72.0	-13.5	0.212	127.1
5.0	-24.6	0.059	167.8	-49.9	0.0032	111.3	8.4	2.634	48.2	-14.0	0.200	101.6
6.0	-32.0	0.025	167.4	-48.2	0.0039	91.3	8.6	2.699	23.3	-15.3	0.171	71.7
7.0	-30.8	0.029	-94.8	-46.9	0.0045	74.9	8.8	2.763	-3.5	-16.9	0.143	39.5
8.0	-22.7	0.073	-103.2	-45.5	0.0053	21.0	8.8	2.768	-30.9	-18.4	0.120	-2.2
9.0	-18.9	0.114	-121.5	-45.2	0.0055	10.3	8.8	2.744	-58.9	-21.3	0.086	-46.9
10.0	-17.2	0.137	-142.6	-44.7	0.0058	-15.5	8.5	2.673	-85.9	-18.9	0.114	-90.7
11.0	-17.4	0.135	-163.9	-43.5	0.0067	-33.4	8.3	2.608	-112.5	-17.9	0.127	-129.6
12.0	-19.3	0.108	175.6	-41.5	0.0084	-45.4	8.2	2.564	-138.5	-18.2	0.123	-162.6
13.0	-25.6	0.052	170.3	-40.6	0.0093	-75.8	8.2	2.578	-164.9	-19.3	0.108	163.4
14.0	-27.0	0.045	-113.0	-38.6	0.0118	-95.9	8.3	2.610	167.1	-22.1	0.078	126.5
15.0	-19.2	0.109	-111.0	-37.8	0.0129		8.3	2.605	138.4	-31.2	0.028	56.7
16.0	-15.6	0.167	-127.9	-37.1	0.0139		8.2	2.574	108.8	-23.5	0.067	-33.3
17.0	-14.3	0.193	-148.4	-36.3	0.0153		8.0	2.510	79.7	-18.1	0.124	-80.7
18.0	-14.8	0.182	-166.6	-35.8	0.0163	164.1	7.8	2.444	50.9	-15.2	0.174	-115.2
19.0	-17.1	0.140	-179.3	-34.7	0.0185	141.5	7.7	2.418	22.1	-13.7	0.207	-147.6
20.0	-21.4	0.086	-166.2	-32.9	0.0227	112.6	7.8	2.466	-7.5	-13.9	0.202	177.9
21.0	-18.4	0.121	-129.5	-31.6	0.0262	80.7	8.1	2.527	-39.9	-16.8	0.145	136.7
22.0	-13.8	0.205	-137.2	-30.9	0.0285	42.7	8.0	2.512	-74.0	-25.3	0.054	66.9
23.0	-12.1	0.247	-152.7	-30.6	0.0296	13.3	7.6	2.395	-108.4	-19.8	0.102	-56.2
24.0	-12.3	0.244	-169.8	-30.3	0.0304	-15.5	7.4	2.344	-142.5	-13.7	0.207	-103.5
25.0	-14.7	0.184	-175.8	-29.7	0.0329	-44.9	7.3	2.315	-175.6	-11.3	0.272	-136.7
26.0	-16.7	0.146	-149.3	-28.5	0.0375	-78.1	7.9	2.469	148.1	-11.7	0.259	-171.3
26.5	-14.1	0.197	-141.6	-28.0	0.0399	-98.5	8.0	2.503	126.9	-13.0	0.223	172.3

Note:

1. Data obtained from on-wafer measurements.

HMMC-5027 Typical Performance

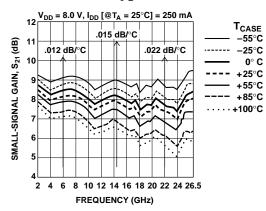


Figure 6. Typical Small-Signal Gain vs. Temperature.

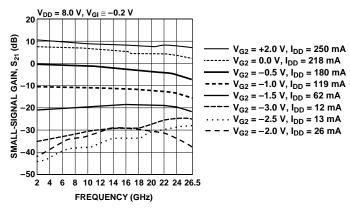


Figure 7. Typical Gain vs. Second Gate Control Voltage.

Figure 8. Typical 1 dB Gain Compression and Saturated Output Power vs. Frequency.

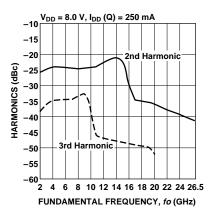


Figure 9. Typical Second and Third Harmonic vs. Fundamental Frequency at P_{OUT} = +21 dBm.

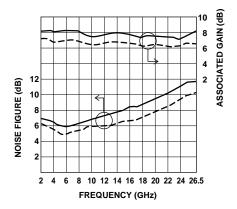


Figure 10. Typical Noise Figure Performance.

Nominal Bias: $V_{DD} = 8.0 \text{ V, } I_{DD} = 250 \text{ mA}$ --- Optimal NF Bias: $V_{DD} = 6.5 \text{ V, } I_{DD} = 130 \text{ mA}$

Note

1. All data measured on individual devices mounted in an HP83040 Series Modular Microcircuit Package @ $T_A = 25^{\circ}C$ (except where noted).

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. In this data sheet the term *typical* refers to the 50th percentile performance. For additional information contact your local HP sales representative.