

2-26.5 GHz GaAs MMIC Traveling Wave Amplifier

Technical Data

HMMC-5021 (2-22 GHz) HMMC-5022 (2-22 GHZ) HMMC-5026 (2-26.5 GHz)

Features

• Wide-Frequency Range: 2-26.5 GHz

• **High Gain:** 9.5 dB

• Gain Flatness: 0.75 dB

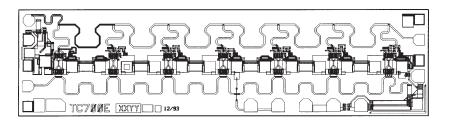
• Return Loss:

Input: -14 dB Output: -13 dB

 Low-Frequency Operation Capability: < 2 GHz

• Gain Control: 35 dB Dynamic Range

• Moderate Power:


 $20\,\mathrm{GHz}$: $P_{-1\mathrm{dB}}$: $18\,\mathrm{dBm}$

P_{sat}: 20 dBm

 $26.5\,\text{GHz:}\ P_{\text{-1dB}}\text{:}\ 15\,\text{dBm}$ $P_{\text{sat}}\text{:}\ 17\,\text{dBm}$

Description

The HMMC-5021/22/26 is a broadband GaAs MMIC Traveling Wave Amplifier designed for high gain and moderate output power over the full 2 to 26.5 GHz frequency range. Seven MESFET cascode stages provide a flat gain response, making the HMMC-5021/22/26 an ideal wideband gain block. Optical lithography is used to produce gate lengths of $\approx 0.4 \,\mu\text{m}$. The HMMC-5021/22/26 incorporates advanced MBE technology, Ti-Pt-Au gate metallization, silicon nitride passivation, and polyimide for scratch protection.

Chip Size: $2980 \times 770 \, \mu m (117.3 \times 30.3 \, mils)$

Chip Size Tolerance: $\pm 10 \mu m (\pm 0.4 mils)$

Chip Thickness: $127 \pm 15 \,\mu\text{m} (5.0 \pm 0.6 \,\text{mils})$

Pad Dimensions: $75 \times 75 \mu m (2.95 \times 2.95 \text{ mils})$, or larger

Absolute Maximum Ratings

Symbol	Parameters/Conditions	Units	Min.	Max.[1]
V_{DD}	Positive Drain Voltage	V		8.0
I_{DD}	Total Drain Current	mA		250
V_{G1}	First Gate Voltage	V	-5	0
I_{G1}	First Gate Current	mA	- 9	+5
$V_{G2}^{[2]}$	Second Gate Voltage	V	-2.5	+3.5
I_{G2}	Second Gate Current	mA	-7	
P_{DC}	DC Power Dissipation	watts		2.0
P _{in}	CW Input Power	dBm		23
T_{ch}	Operating Channel Temp.	°C		+150
T _{case}	Operating Case Temp.	°C	-55	
T_{STG}	Storage Temperature	°C	-65	+165
T_{max}	Maximum Assembly Temp. (for 60 seconds maximum)	°C		+300

Notes

- 1. Operation in excess of any one of these conditions may result in permanent damage to this device. $T_A=25^{\circ}C$ except for T_{ch} , T_{STG} , and T_{max} .
- 2. Minimum voltage on $V_{\rm G2}$ must not violate the following: $V_{\rm G2}(min) > V_{\rm DD}$ 9 volts.

5965-5449E 6-28

HMMC-5021/22/26 DC Specifications/Physical Properties,[1] applies to all part numbers

Symbol	Parameters and Test Conditions	Units	Min.	Тур.	Max.
IDSS	Saturated Drain Current $(V_{DD} = 7.0 \text{ V}, V_{G1} = 0 \text{ V}, V_{G2} = \text{open circuit})$	mA	115	180	250
$V_{\rm p}$	$\begin{aligned} & \text{First Gate Pinch-off Voltage} \\ & (V_{DD} = 7.0 V, I_{DD} = 16 \text{mA}, V_{G2} = \text{open circuit}) \end{aligned}$	V	-3.5	-1.5	-0.5
V _{G2}	Second Gate Self-Bias Voltage $(V_{DD} = 7.0 \text{ V}, V_{G1} = 0 \text{ V})$	V		2.1	
I _{DSOFF} (V _{G1})	First Gate Pinch-off Current $(V_{DD} = 7.0 \text{ V}, V_{G1} = -3.5 \text{ V}, V_{G2} = \text{open circuit})$	mA		4	
I _{DSOFF} (V _{G2})	Second Gate Pinch-Off Current $(V_{DD} = 5.0 \text{ V}, V_{G1} = 0 \text{ V}, V_{G2} = -3.5 \text{ V})$	mA		8	
θ _{ch-bs}	Thermal Resistance (T _{backside} = 25°C)	°C/W		36	

Note:

$\pmb{HMMC\text{-}5021/22/26 \ RF \ Specifications,} \ V_{DD} = 7.0 \ V, I_{DD}(Q) = 150 \ mA, Z_{in} = Z_o = 50 \ \Omega^{\text{[1]}}$

	<u>-</u>	, DI				0	_		
			2.0-22.0 GHz				2.0-26.5 GHz		
Symbol	Parameters/Conditions	Units	HMMC-5021	HMMC-5022		22	HMMC-5026		
	Tarameters/Conditions		Typ.	Min.	Тур.	Max.	Min.	Тур.	Max.
BW	Guaranteed Bandwidth	GHz	2-22	2		22	2		26.5
S ₂₁	Small Signal Gain	dB	10	8.0	10	12	7.5	9.5	12
ΔS_{21}	Small Signal Gain Flatness	dB	± 0.5		± 0.5	± 1.0		± 0.75	± 1.0
RLin(min)	Minimum Input Return Loss	dB	16	10	16		10	14	
RLout(min)	Minimum Output Return Loss	dB	13	10	13		10	13	
Isolation	Minimum Reverse Isolation	dB	32	20	32		20	30	
P-1dB	Output Power at 1 dB Gain Comp.	dBm	18	15	18		12	15	
Psat	Saturated Output Power	dBm	20	17	20		14	17	
H _{2(max)}	Max. Second Harm. $(2 < f_0 < 20)$, $[P_0(f_0) = 17 \text{ dBm or } P_{-1 \text{dB}},$ whichever is less.]	dBc	-25		-25	-20		-25	-20
H _{3(max)}	Max. Third Harm. $(2 < f_0 < 20)$, $[P_0(f_0) = 17 \text{ dBm or P}_{-1\text{dB}},$ whichever is less.]	dBc	-34		-34	-20		-34	-20
NF	Noise Figure	dB	8	<u> </u>	8			10	

Notes:

^{1.} Measured in wafer form with T_{chuck} = 25°C. (Except $\theta_{ch\text{-bs}\text{-}}$)

^{1.} Small-signal data measured in wafer form with $T_{chuck}=25^{\circ}\mathrm{C}$. Large-signal data measured on individual devices mounted in an HP83040 Series Modular Microcircuit Package @ $T_{A}=25^{\circ}\mathrm{C}$.

^{2.} Performance may be extended to lower frequencies through the use of appropriate off-chip circuitry. Upper -3 dB corner frequency ≈ 29.5 GHz.

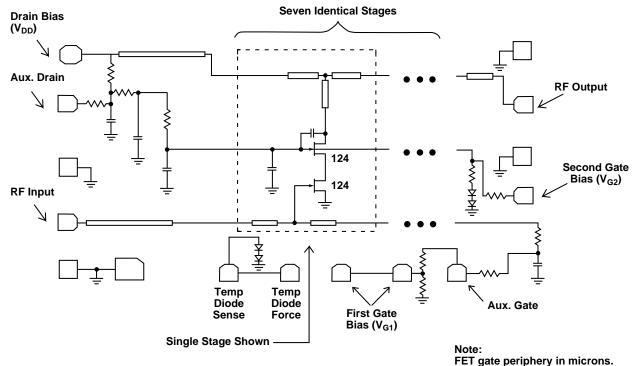
Applications

The HMMC-5021/22/26 series of traveling wave amplifiers are designed for use as general purpose wideband gain blocks in communication systems and microwave instrumentation. They are ideally suited for broadband applications requiring a flat gain response and excellent port matches over a 2 to 26.5 GHz frequency range. Dynamic gain control and low-frequency extension capabilities are designed into these devices.

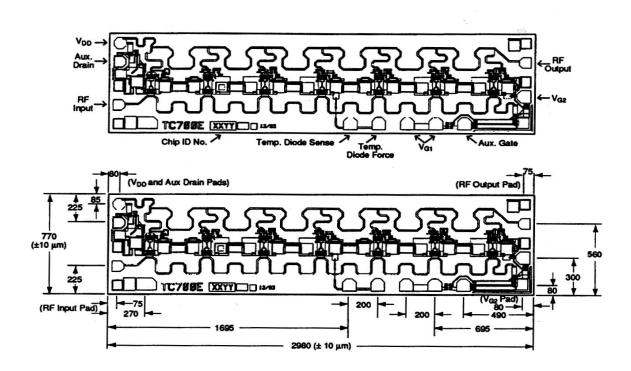
Biasing and Operation

These amplifiers are biased with a single positive drain supply (V_{DD}) and a single negative gate supply (V_{G1}). The recommended bias conditions for the HMMC-5021/22/26 are V_{DD} = 7.0 V, I_{DD} = 150 mA for best overall performance. To achieve this drain current level, V_{G1} is typi-

cally biased between -0.2V and -0.5V. No other bias supplies or connections to the device are required for 2 to 26.5 GHz operation. See Figure 3 for assembly information.


The auxiliary gate and drain contacts are used only for lowfrequency performance extension below≈ 1.0 GHz. When used, these contacts must be AC coupled only. (Do not attempt to apply bias to these pads.) The second gate (V_{G2}) can be used to obtain 35 dB (typical) dynamic gain control. For normal operation, no external bias is required on this contact and its self-bias voltage is≈ +2.1 V. Applying an external bias between its open-circuit voltage and -2.5 volts will adjust the gain while maintaining a good input/output port match.

Assembly Techniques

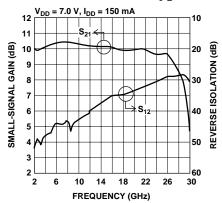

Solder die-attach using a fluxless AuSu solder preform is the recommended assembly method. Gold thermosonic wedge bonding with 0.7 mil diameter Au wire is recommended for all bonds. Tool force should be 22 ± 1 gram, stage temperature should be $150\pm2^{\circ}\mathrm{C}$, and ultrasonic power and duration should be 64 ± 1 dB and 76 ± 8 msec, respectively. The bonding pad and chip backside metallization is gold.

For more detailed information see HP application note #999, "GaAs MMIC Assembly and Handling Guidelines."

GaAs MMICs are ESD sensitive. Proper precautions should be used when handling these devices.

 $Figure\ 1.\ HMMC-5021/22/26\ Schematic.$

Figure~2.~HMMC-5021/22/26~Bonding~Pad~Locations.


Notes:

All dimensions in microns. Rectangular Pad Dim: $75 \times 75 \ \mu m$. Octagonal Pad Dim: $90 \ \mu m$ dia. All other dimensions $\pm 5 \ \mu m$ (unless otherwise noted). Chip thickness: $127 \pm 15 \ \mu m$.

Figure 3. HMMC-5021/22/26 Assembly Diagram.

HMMC-5021/22/26 Typical Performance

10 V_{DD} = 7.0 V, I_{DD} = 150 mA

10 15 SS 22 20 15 S₁₁ 25 S₂₂ 20 S₁₁ 20 SS 22 20 S₁₁ 25 SS 22 26 30 FREQUENCY (GHz)

Figure 4. Typical Gain and Reverse Isolation vs. Frequency.

Figure 5. Typical Input and Output Return Loss vs. Frequency.

 $\textbf{Typical Scattering Parameters}^{\texttt{[1]}}\textbf{,} (T_{chuck} = 25 ^{\circ}\text{C}, V_{DD} = 7.0 \text{ V}, I_{DD} = 150 \text{ mA}, \textbf{Z}_{in} = \textbf{Z}_{out} = 50 \ \Omega$

Freq.		\overline{S}_{11}			\mathbf{S}_{21}		DD	$\mathbf{S_{12}}$		III (\mathbf{S}_{22}	
GHz	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang
2.0	-22.6	0.074	-174.1	-53.1	0.0022	167.3	10.1	3.183	123.6	-28.9	0.036	77.3
3.0	-30.6	0.030	130.4	-51.0	0.0028	120.1	10.0	3.173	102.1	-21.6	0.083	64.1
4.0	-37.8	0.013	-19.8	-48.0	0.0040	95.0	10.2	3.225	78.2	-18.2	0.124	45.4
5.0	-29.4	0.034	-79.9	-46.8	0.0046	67.1	10.3	3.275	53.5	-16.3	0.153	23.4
6.0	-26.6	0.047	-113.8	-44.4	0.0060	36.0	10.4	3.303	28.1	-15.4	0.170	2.5
7.0	-26.6	0.047	-137.0	-44.1	0.0062	1.0	10.4	3.330	2.3	-15.7	0.165	-19.5
8.0	-27.7	0.041	-152.6	-43.4	0.0067	-27.5	10.5	3.331	-23.8	-17.0	0.141	-40.7
9.0	-29.0	0.035	-149.8	-44.3	0.0061	-31.8	10.4	3.312	-50.2	-19.2	0.110	-59.7
10.0	-29.0	0.036	-140.8	-43.0	0.0071	-53.6	10.3	3.282	-76.4	-24.3	0.061	-76.8
11.0	-27.3	0.043	-138.1	-41.6	0.0083	-74.8	10.2	3.253	-102.5	-35.1	0.018	-32.6
12.0	-26.2	0.049	-141.9	-40.0	0.0100	-96.9	10.2	3.227	-128.8	-24.6	0.059	21.0
13.0	-25.8	0.052	-148.5	-38.9	0.0113	-120.9	10.2	3.218	-155.4	-19.7	0.103	2.8
14.0	-26.4	0.048	-143.0	-38.1	0.0125	-145.6	10.1	3.204	177.8	-17.6	0.132	-21.2
15.0	-24.6	0.059	-131.7	-36.6	0.0148	-169.9	10.1	3.197	150.4	-17.0	0.141	-44.8
16.0	-21.6	0.083	-133.7	-35.3	0.0172	160.9	10.0	3.177	122.5	-17.1	0.140	-67.4
17.0	-19.4	0.107	-143.5	-35.0	0.0177	130.6	10.0	3.149	94.4	-18.5	0.119	-91.8
18.0	-18.3	0.121	-158.7	-34.7	0.0184	105.0	9.9	3.138	65.9	-21.8	0.081	-116.0
19.0	-18.7	0.116	-172.6	-33.9	0.0201	80.2	9.9	3.140	36.8	-28.9	0.036	-121.7
20.0	-20.3	0.097	-179.5	-33.3	0.0217	50.7	10.0	3.151	6.6	-28.5	0.038	-57.0
21.0	-21.8	0.082	-168.3	-32.7	0.0233	22.5	10.0	3.150	-24.9	-21.7	0.082	-59.1
22.0	-19.9	0.101	-155.3	-31.7	0.0259	-8.4	9.9	3.126	-57.5	-18.6	0.117	-81.5
23.0	-17.3	0.137	-158.8	-31.4	0.0268	-39.5	9.8	3.076	-91.0	-17.3	0.137	-103.3
24.0	-16.3	0.153	-169.9	-30.7	0.0291	-71.5	9.7	3.045	-125.5	-17.3	0.137	-123.8
25.0	-17.1	0.139	-175.4	-30.0	0.0317	-106.2	9.7	3.045	-162.2	-18.5	0.118	-135.3
26.0	-17.0	0.141	-165.0	-29.2	0.0345	-145.5	9.6	3.027	157.2	-19.4	0.107	-122.5
26.5	-15.7	0.163	-161.1	-29.0	0.0356	-166.7	9.5	2.970	135.4	-17.6	0.132	-114.2
27.0	-14.3	0.192	-162.7	-28.9	0.0357	171.7	9.2	2.876	112.9	-15.3	0.173	-116.0
28.0	-13.2	0.220	-175.7	-28.8	0.0362	126.3	8.5	2.648	65.8	-12.6	0.233	-138.1
29.0	-14.1	0.197	-176.9	-28.6	0.0371	73.0	7.7	2.433	10.3	-15.4	0.170	-144.7
30.0	-11.5	0.266	-171.6	-30.8	0.0287	4.8	4.6	1.689	-61.1	-8.7	0.369	-123.6

Note

1. Data obtained from on-wafer measurements.

HMMC-5021/22/26 Typical Temperature Performance

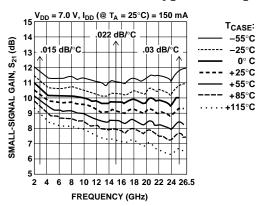
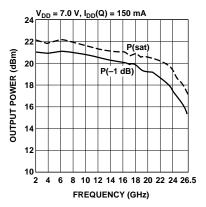
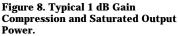




Figure 6. Typical Small-Signal Gain vs. Temperature.

Figure 7. Typical Gain vs. Second Gate Control Voltage.

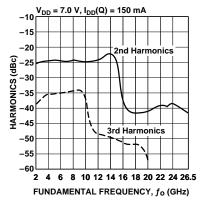
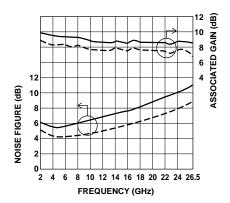



Figure 9. Typical Second and Third Harmonics vs. Fundamental Frequency at $P_{OUT} = +17 \ dBm$.

 $\label{eq:performance} \begin{aligned} \textbf{Figure 10. Typical Noise Figure} \\ \textbf{Performance.} \\ & ---- & \text{Standard Bias:} \\ & V_{DD} = 7.0 \text{ V, } I_{DD} = 150 \text{ mA} \\ & ---- & \text{Optimal NF Bias:} \\ & V_{DD} = 6.0 \text{ V, } I_{DD} = 66 \text{ mA} \end{aligned}$

Note:

1. All data measured on individual devices mounted in an HP83040 Series Modular Microcircuit Package @ $T_A=25^{\circ}C$ (except where noted).

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. In this data sheet the term *typical* refers to the 50th percentile performance. For additional information contact your local HP sales representative.