

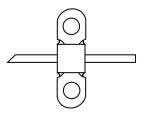
2-10 GHz Medium Power Gallium Arsenide FET

Technical Data

ATF-46101

Features

- High Output Power: $27.0~\mathrm{dBm\,Typical\,P_{\,1\,dB}}$ at $4~\mathrm{GHz}$
- High Gain at 1 dB Compression: 12.0 dB Typical G _{1 dB} at 4 GHz
- **High Power Efficiency:** 38% Typical at 4 GHz


Description

The ATF-46101 is a gallium arsenide Schottky-barrier-gate field effect transistor designed for medium power, linear amplification in the 2 to 10 GHz frequency range. This nominally 0.5 micron

gate length GaAs FET is an interdigitated four-cell structure using airbridge interconnects between drain fingers. Total gate periphery is 1.25 millimeters. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

This device is suitable for applications in space, airborne, military ground and shipboard, and commercial environments. It is supplied in a hermetic high reliability package with low parasitic reactance and minimum thermal resistance.

100 mil Flange Package

Electrical Specifications, $T_A = 25$ °C

Symbol	Parameters and Test Conditions ^[1]	Units	Min.	Тур.	Max.	
P _{1 dB}	Power Output @ 1 dB Gain Compression:	f = 4.0 GHz	dBm	25.0	27.0	
	$V_{DS} = 9 \text{ V}, I_{DS} = 125 \text{ mA}$	$f = 8.0 \mathrm{GHz}$			26.5	
G_{1dB}	$1 \text{ dB Compressed Gain: } V_{DS} = 9 \text{ V}, I_{DS} = 125 \text{ mA}$	f = 4.0 GHz	dB	9.0	10.0	
		$f = 8.0 \mathrm{GHz}$			5.0	
η_{add}	Efficiency @ P_{1dB} : $V_{DS} = 9 V$, $I_{DS} = 125 mA$	f = 4.0 GHz	%		38	
g _m	Transconductance: $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 125 \text{ mA}$		mmho		100	
I_{DSS}	Saturated Drain Current: $V_{DS} = 2.5 \text{ V}, V_{GS} = 0 \text{ V}$		mA	200	330	450
$V_{\rm P}$	Pinch-off Voltage: $V_{DS} = 2.5 \text{ V}$, $I_{DS} = 5 \text{ mA}$		V	-5.4	-3.5	-2.0

Note:

1. RF Performance is determined by packaging and testing 10 samples per wafer.

5965-8731E 5-98

ATF-46101 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
V_{DS}	Drain-Source Voltage	V	+14
V_{GS}	Gate-Source Voltage	V	-7
$V_{ m GD}$	Gate-Drain Voltage	V	-16
I_{DS}	Drain Current	mA	I_{DSS}
P _T	Power Dissipation [2,3]	W	2.0
T_{CH}	Channel Temperature	°C	175
T_{STG}	Storage Temperature	°C	-65 to +175

Thermal Resistance:	$\theta_{\rm jc} = 75^{\circ}\text{C/W}; T_{\rm CH} = 150^{\circ}\text{C}$				
Liquid Crystal Measurement:	1 μm Spot Size ^[4]				

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{MOUNTING SURFACE} = 25$ °C.
- 3. Derate at 13 mW/°C for $T_{\rm CASE} > 25\,^{\circ}{\rm C}.$
- 4. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.

ATF-46101 Typical Performance, $T_A = 25^{\circ}C$

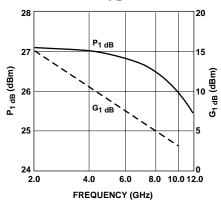
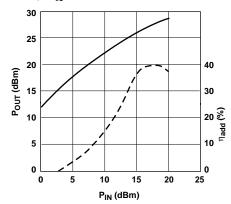
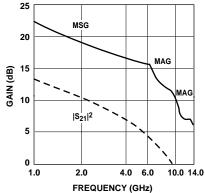
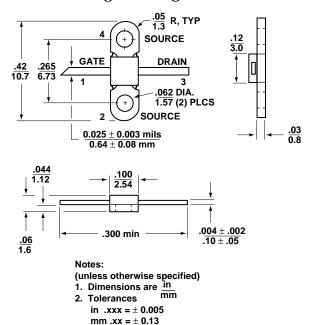



Figure 1. Power Output @ 1 dB Gain Compression and 1 dB Compressed Gain vs. Frequency. $V_{DS}=9V,\,I_{DS}=125\,\,\text{mA}.$

 $\begin{aligned} & Figure \ 2. \ Output \ Power \ and \ Power \\ & Added \ Efficiency \ vs. \ Input \ Power. \\ & V_{DS} = 9 \ V, \ I_{DS} = 125 \ mA, \ f = 4.0 \ GHz. \end{aligned}$




Figure 3. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. V_{DS} = 9 V, I_{DS} = 125 mA.

 $\textbf{Typical Scattering Parameters,} \ Common \ Emitter, \ Z_O = 50 \ \Omega, T_A = 25 ^{\circ}\!\!C, V_{DS} = 9 \ V, I_{DS} = 125 \ mA$

Freq.	S	$\overline{\mathbf{S}_{11}}$		\mathbf{S}_{21}		\mathbf{S}_{12}		\mathbf{S}_{22}		
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
1.0	.94	-56	12.8	4.37	135	-31.4	.027	52	.64	-28
2.0	.86	-101	10.7	3.41	98	-27.3	.043	30	.59	-56
3.0	.82	-131	8.4	2.64	71	-26.9	.045	18	.58	-79
4.0	.82	-152	6.7	2.16	48	-26.4	.048	9	.62	-98
5.0	.80	-173	5.4	1.86	26	-26.0	.050	-1	.63	-112
6.0	.79	165	4.3	1.64	5	-25.8	.051	-12	.65	-126
7.0	.78	143	3.1	1.43	-18	-25.4	.054	- 24	.65	-145
8.0	.78	131	1.6	1.20	-36	-24.7	.058	-37	.70	-166
9.0	.77	123	0.3	1.03	- 55	-23.9	.064	-4 0	.73	173
10.0	.76	118	-1.2	.87	-7 2	-23.1	.070	- 52	.76	158
11.0	.67	104	-2.0	.79	- 91	-22.6	.074	-57	.79	146
12.0	.60	86	-2.7	.73	-110	-21.2	.087	-66	.83	136
13.0	.54	71	-3.5	.67	-133	-19.7	.104	-79	.87	124
14.0	.50	64	-4.0	.63	-154	-15.9	.160	-99	.92	115

A model for this device is available in the DEVICE MODELS section.

100 mil Flange Package Dimensions

Package marking code is 461