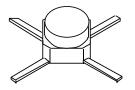


2-16 GHz General Purpose Gallium Arsenide FET

Technical Data

ATF-26836

Features


- **High Output Power:** 18.0 dBm Typical P _{1 dB} at 12 GHz
- High Gain: $9.0\,\mathrm{dB}\,\mathrm{Typical}\,\mathrm{G}_\mathrm{SS}\,\mathrm{at}\,12\,\mathrm{GHz}$
- Cost Effective Ceramic Microstrip Package
- Tape-and-Reel Packaging Option Available^[1]

Description

The ATF-26836 is a high performance gallium arsenide Schottky-barrier-gate field effect transistor housed in a cost effective microstrip package. This device is designed for use in oscillator applications and general purpose amplifier applications in the 2-16 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length with a total gate periphery of 250 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

36 micro-X Package

Electrical Specifications, $T_A = 25$ °C

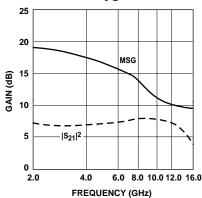
Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
G_{SS}	Tuned Small Signal Gain: $V_{DS} = 5 \text{ V}$, $I_{DS} = 30 \text{ mA}$	$f = 12.0 \mathrm{GHz}$	dB	7.0	9.0	
NFo	Optimum Noise Figure: $V_{DS} = 3 \text{ V}$, $I_{DS} = 10 \text{ mA}$	f = 12.0 GHz	dB		2.2	
G_{A}	Gain @ NF _O : $V_{DS} = 3 V$, $I_{DS} = 10 \text{ mA}$	$f = 12.0 \mathrm{GHz}$	dB		6.0	
P _{1 dB}	Power Output @ 1 dB Gain Compression: $V_{DS} = 5 V, I_{DS} = 30 \text{mA}$	f = 12.0 GHz	dBm	15.0	18.0	
g _m	Transconductance: $V_{DS} = 3 V$, $V_{GS} = 0 V$		mmho	15	35	
I_{DSS}	Saturated Drain Current: $V_{DS} = 3 V$, $V_{GS} = 0 V$		mA	30	50	90
$V_{\rm P}$	Pinch-off Voltage: $V_{DS} = 3 \text{ V}$, $I_{DS} = 1 \text{ mA}$		V	-3.5	-1.5	-0.5

Note:

1. Refer to PACKAGING section "Tape-and-Reel Packaging for Surface Mount Semiconductors."

5-67 5965-8704E

ATF-26836 Absolute Maximum Ratings


Symbol	Parameter	Units	Absolute Maximum ^[1]
V _{DS}	Drain-Source Voltage	V	+7
V _{GS}	Gate-Source Voltage	V	-4
$V_{ m GD}$	Gate-Drain Voltage	V	-8
I_{DS}	Drain Current	mA	$I_{ m DSS}$
P_{T}	Power Dissipation [2,3]	mW	275
T_{CH}	Channel Temperature	°C	175
T_{STG}	Storage Temperature ^[4]	°C	-65 to +175

Thermal Resistance:	$\theta_{\rm jc} = 350$ °C/W; $T_{\rm CH} = 150$ °C
Liquid Crystal Measurement:	1 μm Spot Size ^[5]

Part Number Ordering Information

Part Number	Devices Per Reel	Reel Size		
ATF-26836-TR1	1000	7"		
ATF-26836-STR	10	strip		

ATF-26836 Typical Performance, $T_A = 25^{\circ}C$

 $\label{eq:Figure 1. Insertion Power Gain,} Maximum Available Gain and Maximum Stable Gain vs. Frequency. \\ V_{DS} = 5 \text{ V, } I_{DS} = 30 \text{ mA.}$

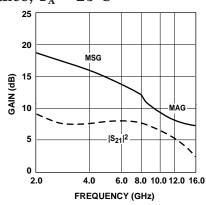
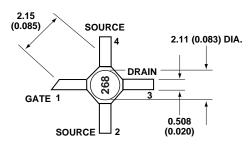
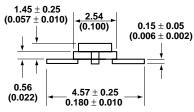


Figure 2. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $V_{DS}=3\ V,\ I_{DS}=10\ mA.$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 2.9 mW/°C for $T_{CASE}\!>\!79^{\circ}C.$
- 4. Storage above +150°C may tarnish the leads of this package difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.


 $\textbf{Typical Scattering Parameters,} \ Common \ Emitter, \ Z_O = 50 \ \Omega, T_A = 25 ^{\circ}\text{C}, V_{DS} = 3 \ V, I_{DS} = 10 \text{mA}$


Freq.	S	11		$\mathbf{S_{21}}$		$\mathbf{S_{12}}$		$\mathbf{S_{22}}$		
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
2.0	.94	-38	8.2	2.57	138	-27.1	.044	60	.74	-26
3.0	.90	-55	7.8	2.45	120	- 24.9	.057	51	.71	-35
4.0	.84	-7 2	7.6	2.41	102	-22.9	.072	44	.71	-44
5.0	.75	- 92	8.0	2.50	82	-20.6	.093	30	.66	-53
6.0	.64	-117	8.1	2.55	61	-19.3	.109	15	.60	-64
7.0	.52	-155	8.3	2.60	37	-18.1	.124	5	.51	-78
8.0	.49	163	7.9	2.47	14	-17.5	.133	-12	.41	-92
9.0	.52	126	7.2	2.30	-7	-16.9	.143	-21	.30	-106
10.0	.56	100	6.4	2.10	-28	-16.8	.144	-32	.24	-125
11.0	.61	78	5.6	1.91	- 47	-17.1	.140	- 41	.18	-154
12.0	.67	58	4.7	1.71	-66	-17.1	.139	-4 9	.15	168
13.0	.69	45	3.9	1.57	- 83	-17.3	.137	- 61	.17	134
14.0	.72	35	3.0	1.42	-98	-17.2	.138	-66	.19	107
15.0	.72	22	2.5	1.33	-115	-17.2	.138	-77	.23	89
16.0	.72	13	2.0	1.26	-128	-17.4	.135	-85	.27	71

Freq.	S ₁₁		\mathbf{S}_{21}			S_{12}			\mathbf{S}_{22}	
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
2.0	.94	-44	9.0	2.82	130	-30.2	.031	65	.80	-31
3.0	.86	- 63	8.5	2.65	110	-28.4	.038	56	.80	-4 3
4.0	.78	-81	8.0	2.51	89	-26.9	.045	47	.79	-52
5.0	.68	-97	7.9	2.49	71	-25.5	.053	41	.78	-58
6.0	.57	-118	8.1	2.53	51	-24.4	.060	39	.76	-67
7.0	.43	-151	8.5	2.65	28	-22.4	.076	38	.73	-80
8.0	.37	165	8.5	2.66	3	-20.6	.093	30	.69	-99
9.0	.40	122	8.0	2.52	-20	-18.0	.126	15	.64	-119
10.0	.47	96	7.7	2.42	- 42	-16.4	.152	3	.66	-140
11.0	.55	75	7.5	2.37	-66	-15.1	.176	- 4	.63	-166
12.0	.61	53	7.4	2.35	-88	-13.8	.205	-19	.64	168
13.0	.71	33	7.4	2.34	-116	-13.2	.220	- 39	.71	132
14.0	.71	10	6.7	2.17	-143	-13.5	.212	-56	.78	104
15.0	.65	-10	5.7	1.93	-170	-14.0	.200	-72	.85	79
16.0	.58	-30	4.2	1.62	166	-14.9	.180	- 93	.98	61

A model for this device is available in the DEVICE MODELS section.

36 micro-X Package Dimensions

Notes:

- Dimensions are in millimeters (inches)
 Tolerances: in .xxx = ± 0.005 mm .xx = \pm 0.13