

Single Mode Connectorized Laser Diode (Low Power)

Technical Data

LST0605-FC-A

Features

- 1300 nm Single Mode
- Hermetic Construction
- Industry Standard FC Connector
- Low Threshold Current
- Integral InGaAs PIN Monitor Photodiode
- High Reliability
- Connectorized for Ease of Use

Applications

- Fiber Optic Laser Transmitter
- Instrumentation
- Subscriber Loop Communications Systems
- Low Cost Single Mode Fiber Systems
- SM-FDDI
- E-O Convertors

Description

The LST0605-FC-A series has been developed for low cost, coolerless low power single mode applications using the FC style connector. Both the buried heterostructure laser and the monitor photodiode are manufactured using the Hewlett-Packard MOVPE process.

Laser Safety Warning

This device is a Class IIIb (3b) Laser Product. It may emit invisible laser radiation from an open optical port. To avoid possible eye damage do not look into an open optical port during laser operation. Do not exceed specified operating limits.

Absolute Maximum Ratings

Absolute maximum limits mean that no catastrophic damage will occur if the product is subjected to these ratings for short periods, provided each limiting parameter is in isolation and all other parameters have values within the performance specification. It should not be assumed that limiting values of more than one parameter can be applied to the product at the same time.

Parameter	Minimum	Typical	Maximum	Units
Forward Current	-	-	100	mA
Reverse Current	-	-	100	μA
Reverse Voltage	-	-	2.0	V
Operating Temperature (Case)	-20	-	70	°C
Storage Temperature	-40	-	85	°C

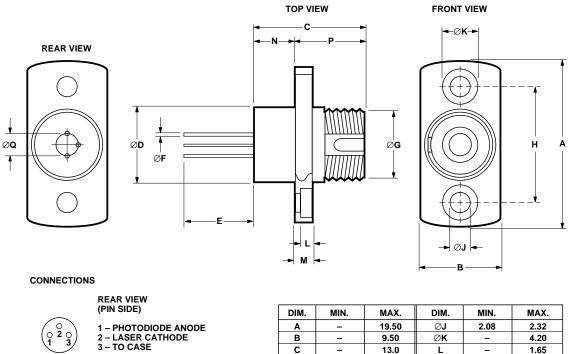
Performance Specification (Tc 25°C)

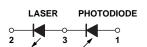
Parameter	Minimum	Typical	Maximum	Units	Notes
Peak Wavelength	1270	1300	1330	nm	1
Spectral Width (FWHM)	-	5	10	nm	1
Optical Output	100	200	500	μW	1,2
Forward Voltage	-	1.2	1.4	V	1
Rise Time	-	0.5	1.0	ns	3
Fall Time	-	0.5	1.0	ns	3
Wavelength Temperature Coefficient	-	0.45	0.6	nm/°C	4
Threshold Current	5	14	25	mA	5
Monitor Current	60	125	270	μΑ	6
Dark Current	-	-	50	nA	7
Tracking Error	-	± 0.5	± 1.5	dB	8

Notes:

- 1. CW, Ith + 15 mA.
- 2. Final test limits using single mode FC terminated fiber.

3. 10/90% rise, 90/10% fall, Ibias = Ith.

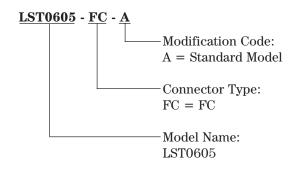

4. Im const.


5. CW.

6. -5 V photodiode bias. 7. -5 V bias, Pout = 0 μ W.

8. -20°C/+70°C, Im const.

LST0605-FC-A Package Drawing



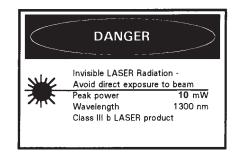
DIM.	MIN.	MAX.	DIM.	MIN.	MAX.
Α	-	19.50	ØJ	2.08	2.32
В	-	9.50	ØK	-	4.20
С	-	13.0	L	-	1.65
ØD	-	9.0	м	-	2.20
Е	12.0	-	N	-	4.80
ØF	0.41	0.47	Р	-	8.20
ØG	M8 x	0.75	ØQ	2.54 NOM.	
н	13.35	13.55			

ALL DIMENSIONS IN MILLIMETERS

Ordering Information

Handling Precautions

- 1. The LST0605 can be damaged by current surges or overvoltage.
- 2. Power supply transient precautions should be taken.
- 3. Normal handling precautions for electrostatic sensitive devices should be taken.


CDRH Certification

Hewlett-Packard Ltd Whitehouse Road Ipswich, Suffolk IP1 5PB England

Manufactured: _____ Serial No. _____ Model No. _____

This product conforms to the applicable requirements of 21 CFR 1040 at the date of manufacture.

Laser Warning

Single Mode SC Connectorized Laser Transmitter Module

Technical Data

LST062X-SC-A

Features

- 1300 nm Single Mode
- Industry Standard SC Connector
- High Reliability
- Connectorized for Ease of Use
- Convenient Variety of 4 Pin Configurations
- Hermetic Construction
- Wide Operating Temperature -40°C to +85°C
- Modulation Capability up to 622 Mbit/s
- SONET SR/IR up to OC12 SDH STM1 and 4 Compliant
- Laser Eye Safety Classifications: CDRH Class 1 Compliant IEC825-1 Class 3A
- 200 µW Fiber Coupled Power

Applications

- Telecommunications
- Fiber in the Loop
- Inter/Intra Office
- SONET/SDH
- Datacommunications
- Switches

Laser Safety Warning

Description

The LST062X-SC-A series is a laser transmitter, operating in the 1300 nm wavelength region. It is designed for use in short and medium distance networks with bit rates up to 622 Mbit/s.

The device features a high reliability laser diode and a monitor photodiode in a hermetic package. These are electrically connected to four pins in an industry-standard configuration.

Environmental performance is designed to be compatible with the requirements of Bellcore's TA-NWT-000983 document.

Options within the LST062X-SC-A family offer several 4 Pin configurations with pin rotational

orientations designed to match existing products available on the market.

If the specific arrangement or performance you require is not listed, please contact your local representative as our highly flexible design and manufacturing processes allow both physical and electrooptical customization to meet your needs.

This device is a Class IIIa (3A) Laser Product. It may emit invisible laser radiation from an open optical port. To avoid possible eye damage do not look into an open optical port during laser operation. Do not exceed specified operating limits.

Absolute Maximum Ratings

Absolute maximum limits mean that no catastrophic damage will occur if the product is subjected to these ratings for short periods, provided each limiting parameter is in isolation and all other parameters have values within the performance specification. It should not be assumed that limiting values of more than one parameter can be applied to the product at the same time.

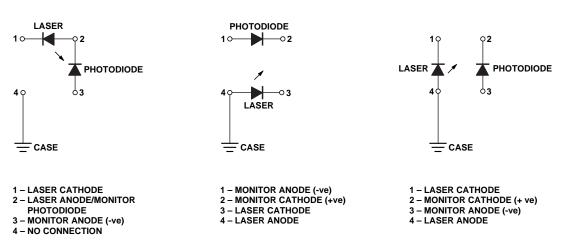
	a 1 1		Limits		
Parameter	Symbol	Conditions	Min.	Max.	Units
Laser Forward Current	lf	DC	-	150	mA
Laser Reverse Current	Ir	DC	-	100	μΑ
Laser Reverse Voltage	Vlr	DC	-	2	V
Photodiode Reverse Voltage	Vr	DC	-	10	V
Photodiode Forward Current	Ipf	DC	-	1	mA
Operating Temperature	Тс	$Pf = 200 \mu W$	-40	+85	°C
Storage Temperature	Ts		-40	+85	°C
Relative Humidity	RH		0.0	non-	%/RH
				condensing	
Mechanical Shock		Mil Std 883D, Method 2002,			
		Condition B			
Vibration		Mil Std 883D, Method 2007,			
		Condition A			

Performance Specifications

Parameter	Symbol	Conditions	Limits		Units
rarameter	Symbol	Conditions	Min.	Max.	
LASER		CW, Tc = 25° C, Pf = 200μ W unless otherwise stated			
Threshold Current	lth		7	16	mA
Peak Optical Output Power	Pf	Tc = -40°C to $+85$ °C CW	200	-	μW
Optical Output Power	Pth	Pth = Pf @ Ith - 2mA	-	8	μW
Slope Efficiency		Tc = 25°C	10	25	mW/mA
		Tc = -40°C to $+85$ °C	5	40	mW/mA
Drive Current above Ith	Id	$Pf = 200 \mu W$	8	20	mA
Forward Voltage	Vf		-	1.6	V
Center Wavelength	lc	Note 1	1260	1360	nm
Temp. Dependence of lc	Dlc/DT	Tc = -40°C to $+85$ °C	-	0.4	nm/°C
Linewidth	Dl	1xs, RMS, Note 1	-	2.5	nm
Rise Time	tr	10% to 90%: Ith to $Pf = 200 \mu W$	-	0.5	ns
Fall Time	tf	90°C to 10fi: $Pf = 200 \mu W$ to Ith	-	0.5	ns

Note:

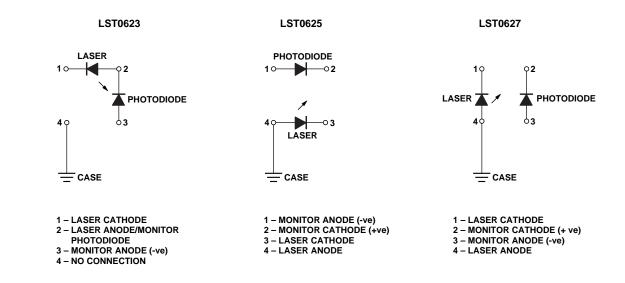
1. Modulated measurements also available.

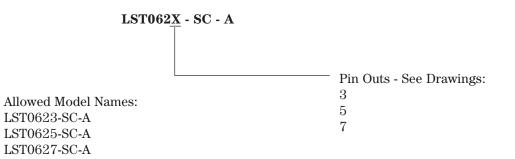

I CITOI Mance Specifications (cont u.)	Performance	Specifications	(cont'd.)
--	-------------	-----------------------	-----------

Parameter	Symbol	Conditions	Limits		Units
	Symbol	Conuitions	Min.	Max.	Units
MONITOR PHOTODIODE		$Tc = 25^{\circ}C, Vr = -5 V (Note 2)$ Pf = 200 μ W			
		unless otherwise stated			
Photocurrent	Im		100	1500	μΑ
Dark Current	Id	$Pf = 0 \mu W$	-	20	nA
Capacitance	С	1 MHz	-	10	Pf
Tracking Error	DR	Im = Im @ (Pf = 200 μ W, Tc = 25°C)			
		Tc = -40°C to $+85$ °C	-	± 1.5	dB
Rise Time	tr	10% to 90%: Ith to $Pf = 200 \ \mu W$	-	2.0	ns
Fall Time	tf	90% to 10%: $Pf = 200 \ \mu W$ to Ith	-	2.0	ns



LST0625

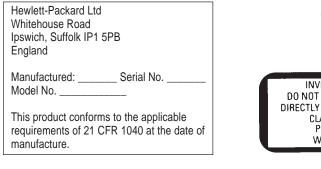



DIM.	MIN.	MAX.	DIM.	MIN.	MAX.
Α	-	13.50	I	-	29.00
В	15.1	15.50	ØJ	0.41	0.49
С	21.50	22.50	K	12.00	-
D	12.60	13.00	ØL	2.20	2.40
E	2.00	2.20	ØM	-	8.60
F	2.90	3.10	N	-	2.60
G	17.50	18.50	0	9.20	9.40
ØH	-	7.00	ØP	1.90	2.10

ALL DIMENSIONS IN MILLIMETERS

Pin Outs

Ordering Information



Handling Precautions

- 1. The LST062X can be damaged by current surges or overvoltage.
- 2. Power supply transient precautions should be taken.
- 3. Normal handling precautions for electrostatic sensitive devices should be taken.

CDRH Certification

Laser Warning

