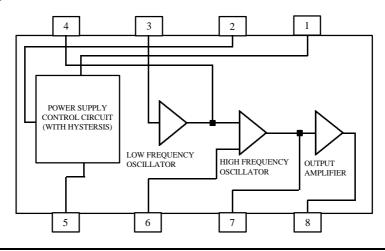
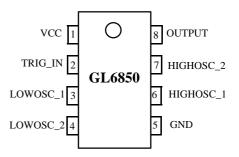
GL6850 TWO TONE RINGER

Description


The GL6850 tone ringer is a monolithic device, which incorporates two oscillators, and output amplifier and a power supply control circuit. The oscillator frequencies can be adjusted over a wide range by selection of external components. One oscillator, normally operated at a low frequency, causes the second oscillator to alternate between its nominal frequency and a related higher frequency. The resulting output is a distinct warbling tone. The output amplifier will drive either a transformer coupled loudspeaker or a piezo-ceramic transducer.

The device can be powered from a telephone line or a fixed d.c. supply. The power control circuit has builtin hysteresis to prevent false triggering and rotary dial chirps. The GL6850 can be triggered externally under logic control.


Features

- Low current consumption.
- Designed for telephone bell replacement.
- Small size MINIDIP package.
- Adjustable 2- frequency tone.
- Built-in hysteresis prevents false triggering and rotary dial CHIRPS.
- Alarms or other alerting devices.
- External triggering or ringer disable.
- Include ESD protection.

Block Diagram

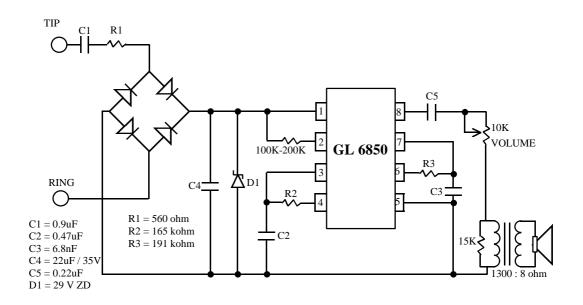
Pin Configuration

Absolute Maximum Ratings (Ta = 25; É

CHARACTERISTICS	SYMBOL	VALUE	UNIT
Supply Voltage	V _{CC}	30	V
Power Dissipation	v _{CC} Po	400	mW
Operating Temperature	Topr	-25 to 65	; É
Storage Temperature	Tstg	-65 to 150	; E

Electrical Characteristics (Ta = 25; É

CHARACTERISTICS	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Operating Supply Voltage	V _{CC}		-	1	29.0	V
Initiation Supply Voltage ¹	V _{SI}		17	19	21	V
Initiation Supply Current ¹	I _{SI}		0.9	2.0	3.7	mA
Sustaining Voltage ²	V _{SUS}		9.7	11.0	12.0	V
Sustaining Current ²	I _{SUS}		0.4	1.0	2.0	mA
Trigger Voltage ³	V _{TR}	$V_{CC} = 15 V$	9.5	1	-	V
Trigger Current ³	I _{TR}	$V_{CC} = 15 V$	40	-	1000^{5}	μA
Disable Voltage ⁴	V _{DIS}	$V_{CC} = 21 V$	-	-	0.8	V
Disable Current ⁴	I _{DIS}	$V_{CC} = 21 V$	-50	-	-	μA
Output Voltage High	V _{OH}	V _{CC} =21V, I ₈ =-10mA Pin6 =6V,Pin7=GND	17	19	21	V
Output Voltage Low	V _{OL}	V _{CC} =21V, I ₈ = -10mA Pin6= GND,Pin7=6V	-	-	2	V
	$f_{\rm H1}$					
High Frequency 1 High Frequency 2 Low Frequency	${ m f}_{ m H2}$ ${ m f}_{ m L}$	R3=191K, C3=6800Pf R3=191K, C3=6800pF R2=165K, C2=0.47µF	461 576 9.0	461 640 10	563 704 11.0	Hz Hz Hz


* NOTE

- 1. Initial supply voltage (V_{SI}) is the supply voltage required to start the tone ringer oscillation.
- 2. Sustaining voltage (V_{SUS}) in the supply voltage required to maintain oscillation.
- 3. V_{TR} and I_{TR} are the conditions applied to trigger to start for V_{SUS} ; \hat{N}_{CC} ; \hat{N}_{SI}
- 4. V_{DIS} and I_{DIS} are the conditions applied to trigger to inhibit oscillation for V_{SI} ; $\hat{A}V_{CC}$
- 5. Trigger current must be limited to this value externally.

PIN DESCRIPTION

PIN NUMBER	PIN FUNCTION	DESCRIPTION
PIN 1	VCC	Operating supply D.C. voltage rectified from ringing signal.
PIN2	TRIG_IN	Oscillator External Trigger/Inhibit pin (must beconnected through a current limiting resistor, which is used to program the slope of supply current vs voltage.)
PIN3	LOWOSC_1	Low Frequency Time Constant Adjustment pins f _L is controlled
PIN 4	LOWOSC_2	externally by R_2 and C_2 $f_L = 1/1.289R_2C_2$
PIN 5	GND	Ground
PIN 6	HIGHOSC_1	High Frequency Time Constant Adjustment Pins f_{H1} and f_{H2} are
PIN 7	HIGHOSC_2	controlled externally by R_3 and C_3 . $f_{H1}=1/1.504R_3C_3$, $f_{H2}=1/1.203R_3C_3$
PIN 8	OUTPUT	Tone output

APPLICATON CIRCUIT

