IC62VV12816L IC62VV12816LL

Document Title

128Kx16 bit 1.8V and Ultra Low Power CMOS Static RAM

Revision History

Revision NoHistoryDraft DateRemark0AInitial DraftApril 23,2002Preliminary

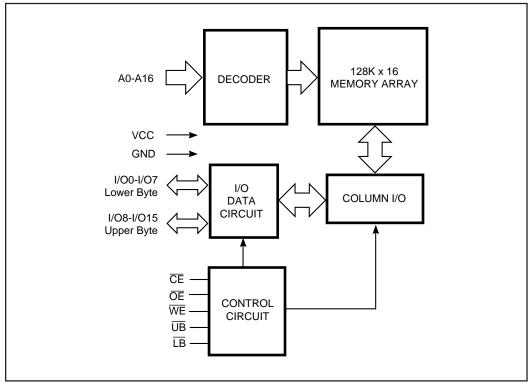
The attached datasheets are provided by ICSI. Integrated Circuit Solution Inc reserve the right to change the specifications and products. ICSI will answer to your questions about device. If you have any questions, please contact the ICSI offices.

128K x 16 1.8V ULTRA LOW POWER CMOS STATIC RAM

FEATURES

- High-speed access times: 70, 100 ns
- CMOS low power operation lcc1=7mA (typical)* operating lsb2=0.5µA (typical)* CMOS standby
- Typical values are measured at Vcc=1.8V, TA=25°C
- · TTL compatible interface levels
- Single 1.65V-2.2V Vcc power supply
- Fully static operation: no clock or refresh required
- Three state outputs
- Data control for upper and lower bytes
- · Industrial temperature available
- Available in the 44-pin TSOP-2 and 48-pin 6*8mm TF-BGA

DESCRIPTION

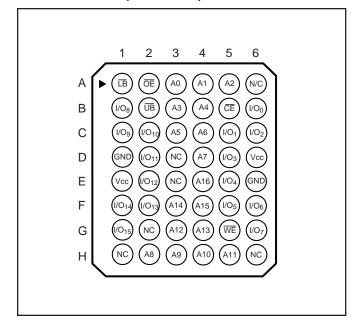

The ICSI IC62VV12816L and IC62VV12816LL are low-power, 2,097,152 bit static RAMs organized as 131,072 words by 16 bits. They are fabricated using ICSI's high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields high-performance and low power consumption devices.

When \overline{CE} is HIGH (deselected) or both \overline{LB} and \overline{UB} are HIGH, the device assumes a standby mode at which the power dissipation can be reduced by using CMOS input levels.

Easy memory expansion is provided by using Chip Enable Output and Enable inputs, \overline{CE} and \overline{OE} . The active LOW Write Enable (\overline{WE}) controls both writing and reading of the memory. A data byte allows Upper Byte (\overline{UB}) and Lower Byte (\overline{LB}) access.

The IC62VV12816L and IC62VV12816LL are packaged in the JEDEC standare 44-pin TSOP-2 and 48-pin 6*8mm TF-BGA.

FUNCTIONAL BLOCK DIAGRAM


ICSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2001, Integrated Circuit Solution Inc.

PIN CONFIGURATIONS 44-Pin TSOP-2

48-Pin TF-BGA (TOP View)

PIN DESCRIPTIONS

A0-A16	Address Inputs			
I/O0-I/O15	Data Input/Output			
CE	Chip Enable Input			
ŌE	Output Enable Input			
WE	Write Enable Input			

LB	Lower-byte Control (I/O0-I/O7)
UB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
Vcc	Power
GND	Ground

TRUTH TABLE

_						I/O PIN		
Mode	WE	CE	ŌĒ	\overline{LB}	UB	1/00/-1/07	I/O8-I/O15	Power
Not Selected	Х	Н	Χ	Χ	Х	High-Z	High-Z	Stand by
	Χ	L	X	Н	Н	High-Z	High-Z	Stand by
Output Disable	d H	L	Н	Χ	Χ	High-Z	High-Z	Active
	Χ	L	Χ	Н	Н	High-Z	High-Z	Stand by
Read	Н	L	L	L	Н	D оит	High-Z	Active
	Н	L	L	Н	L	High-Z	D оит	
	Н	L	L	L	L	D оит	D оит	
Write	L	L	Χ	L	Н	DIN	High-Z	Active
	L	L	Χ	Н	L	High-Z	Din	
	L	L	Χ	L	L	DIN	DIN	

OPERATING RANGE

Range	Ambient Temperature	V cc
Commercial	0°C to +70°C	1.65V- 2.2V
Industrial	–40°C to +85°C	1.65V - 2.2V

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit	
VTERM	Terminal Voltage with Respect to GND	-0.5 to Vcc + 0.4	V	
TBIAS	Temperature Under Bias	-40 to + 85	°C	
Vcc	Vcc related to GND	-0.3 to + 2.4	V	
Тѕтс	Storage Temperature	-65 to + 150	°C	
Рт	Power Dissipation	1.0	W	

Notes:

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	Iон = −0.1 mA	1.4	_	V
Vol	Output LOW Voltage	IoL = 0.1 mA	_	0.2	V
VIH ⁽¹⁾	Input HIGH Voltage		1.4	Vcc + 0.2	V
VIL ⁽²⁾	Input LOW Voltage		-0.2	0.4	V
Li	Input Leakage	GND ≤ Vin ≤ Vcc	- 1	1	μA
ILO	Output Leakage	GND ≤ Vout ≤ Vcc, Outputs Disabled	-1	1	μA

Notes:

CAPACITANCE(1)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	pF
Соит	Output Capacitance	Vout = 0V	8	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

^{1.} VIH(max.) = Vcc+2.0V for pulse width less than 10 ns.

^{2.} $V_{IL}(min.) = -2.0V$ for pulse width less than 10 ns.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0.4V to 1.4V
Input Rise and Fall Times	5 ns
Input Reference Level	0.9V
Output Reference Level	0.9V
Output Load	See Figures 1

AC TEST LOADS

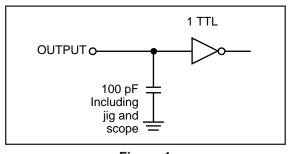


Figure 1

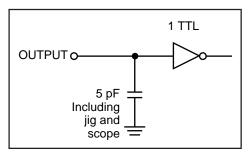


Figure 2

IC62VV12816L POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-7	70	-10	-	
Symbol	Parameter	TestConditions		Min.	Max.	Min.	Max.	Unit
l0C1	Vcc Dynamic Operating	Vcc = 1.8V,	Com.	_	15	_	10	mA
	Supply Current	IOUT = 0 mA, f = fMAX	Ind.	_	15	_	10	
loc2	Vcc Dynamic Operating	Vcc=1.8V,	Com.	_	2	_	2	mA
	Supply Current	IOUT = 0 mA, f = 1MHz	Ind.	_	2	_	2	
ISB2	CMOS Standby	Vcc = Max., Other inputs= 0 - Vcc	Com.	_	35	_	35	μA
	Current (CMOS Inputs)	1) $\overline{CE} \ge Vcc - 0.2V$ (\overline{CE} controlled) 2) $\overline{LB}/\overline{UB} \ge Vcc - 0.2V$ ($\overline{LB}/\overline{UB}$ controlled)	Ind.	_	50	_	50	

Note:

1. At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

IC62VV12816LL POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-	' 0	-10		
Symbol	Parameter	TestConditions		Typ ⁽²⁾ .	Max.	Typ ⁽²⁾ .	Max.	Unit
lcc1	Vcc Dynamic Operating	$Vcc = 1.8V, \overline{CE} \le Vll$	Com.	7	15	4	10	mΑ
	Supply Current	IOUT = 0 mA, f = fMAX	Ind.	7	15	4	10	
lcc2	Vcc Dynamic Operating	$Vcc = 1.8V, \overline{CE} \le Vll$	Com.	_	2	_	2	mA
	Supply Current	IOUT = 0 mA, f = 1MHz	Ind.	_	2	_	2	
ISB2	CMOS Standby	Vcc = Max., Other inputs= 0 - Vcc	Com.	0.5	5	0.5	5	μA
	Current (CMOS Inputs)	1) $\overline{CE} \ge Vcc - 0.2V$ (\overline{CE} controlled) 2) $\overline{LB}/\overline{UB} \ge Vcc - 0.2V$ ($\overline{LB}/\overline{UB}$ controlled)	Ind.	_	10	_	10	

Note:

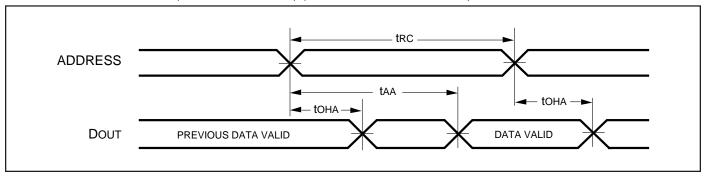
READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-70		-100		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	70	_	100	_	ns
t AA	Address Access Time	_	70	_	100	ns
t oha	Output Hold Time	10	_	15	_	ns
t ACE	CE Access Time	_	70	_	100	ns
t DOE	OE Access Time	_	35	_	50	ns
1 HZOE ⁽²⁾	OE to High-Z Output	_	25	_	30	ns
1LZOE ⁽²⁾	OE to Low-Z Output	5	_	5	_	ns
1HZCE ⁽²⁾	CE to High-Z Output	0	25	0	30	ns
1 LZCE ⁽²⁾	CE to Low-Z Output	10	_	10	_	ns
t BA	LB, UB Access Time	_	70	_	100	ns
t HZB	LB, UB o High-Z Output	0	25	0	35	ns
t zB	LB. UB to Low-Z Output	0	_	0	_	ns

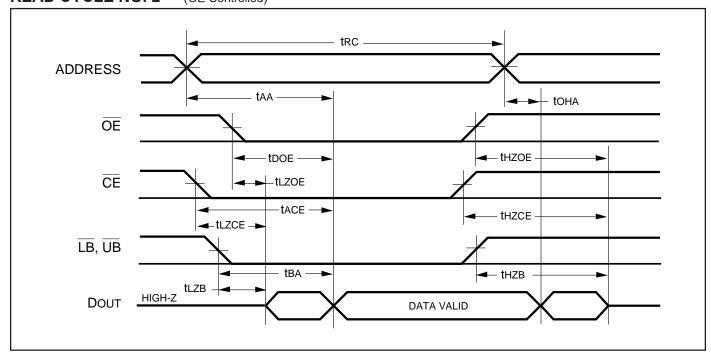
Notes:

^{1.} At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

^{2.} Typical values are measured at Vcc=1.8V, Ta=25°C, and are not guaranteed or tested.


^{1.} Test conditions assume signal transition times of 5 ns or less, input pulse levels of 0.4V to 1.4V and output loading specified in Figure 1.

^{2.} Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.



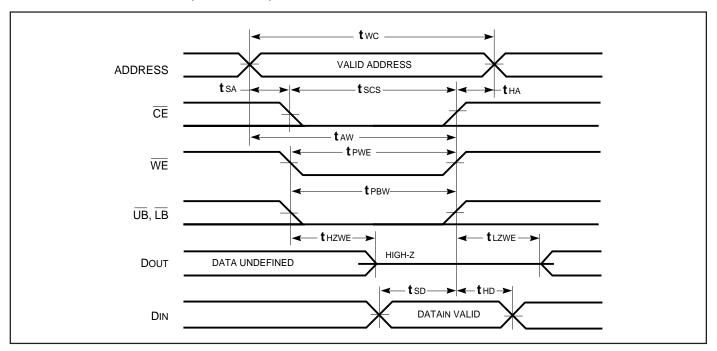
AC TEST LOADS

READ CYCLE NO.1(1,2) (Address Controlled) ($\overline{CE} = \overline{OE} = V_{IL}$, \overline{UB} or $\overline{LB} = V_{IL}$)

AC WAVEFORMS READ CYCLE NO. 2^(1,3) (OE Controlled)

Notes:

- WE is HIGH for a Read Cycle.
 The device is continuously selected. OE, CE, UB, or LB = VIL.
 Address is valid prior to or coincident with CE LOW transitions.

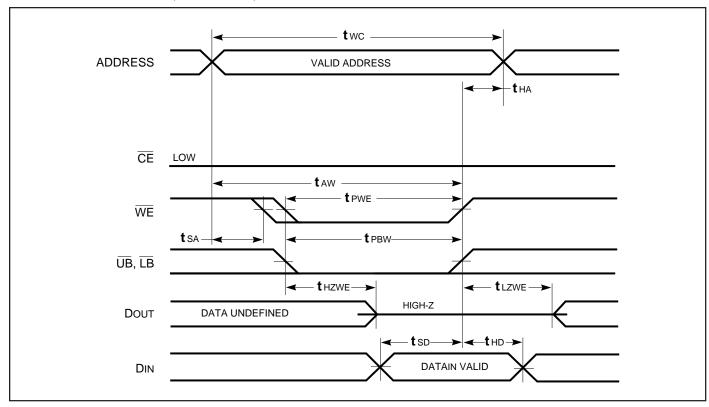

WRITE CYCLE SWITCHING CHARACTERISTICS(1,2) (Over Operating Range)

		-7	70	-10	00	
Symbol	Parameter	Min.	Max.	Min.	Max	Unit
twc	Write Cycle Time	70	_	100	_	ns
tsce	CE to Write End	65	_	80	_	ns
taw	Address Setup Time to Write End	65	_	80	_	ns
1 HA	Address Hold from Write End	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	_	ns
1PWB	LB, UB Valid to End of Write	60	_	80	_	ns
1PWE	WE Pulse Width	55	_	80	_	ns
tso	Data Setup to Write End	30	_	40	_	ns
1 HD	Data Hold from Write End	0	_	0	_	ns
1HZWE ⁽³⁾	WE LOW to High-Z Output	_	30	_	40	ns
1LZWE ⁽³⁾	WE HIGH to Low-Z Output	5	_	5	_	ns

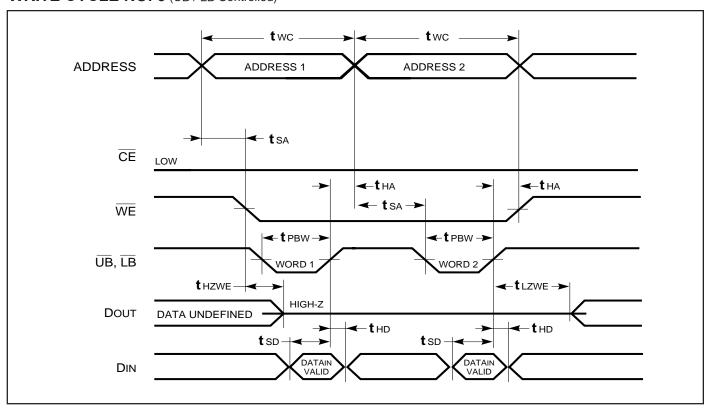
Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, input pulse levels of 0.4V to 1.4V and output loading specified in Figure 1.
- 2. The internal write time is defined by the overlap of \overline{CE} LOW, and \overline{UB} or \overline{LB} , and \overline{WE} LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS WRITE CYCLE NO. 1(1,2) (CE Controlled)

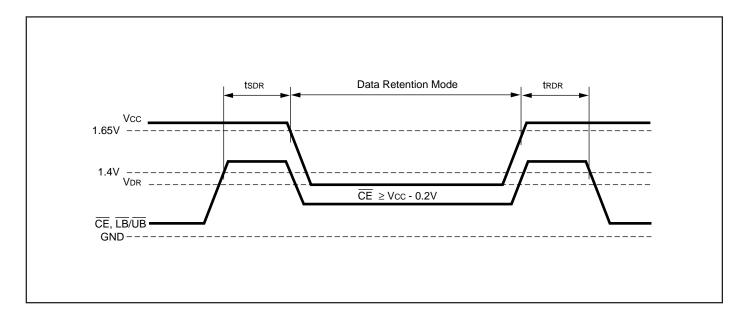


Notes:


- 1. WRITE is an internally generated signal asserted during an overlap of the LOW states on the $\overline{\text{CE}}$ and $\overline{\text{WE}}$ inputs and at least one of the LB and UB inputs being in the LOW state.
- 2. WRITE = (\overline{CE}) [(\overline{LB}) = (\overline{UB})] (\overline{WE}) .

WRITE CYCLE NO. 2 (WE Controlled)

WRITE CYCLE NO. 3 (UB / LB Controlled)



DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	TestCondition		Min.	Max.	Unit	
VDR	Vcc for Data Retention	See Data Retention Waveform		1.0	2.2	V	
l DR	Data Retention Current	$Vcc = 1.2V, \overline{CE} \ge Vcc - 0.2V$	Com. (-L) Com. (-LL)	_	15 3	μΑ	
			Ind. (-L)	_	20		
			Ind. (-LL)	_	5		
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	_	ns	
t RDR	Recovery Time	See Data Retention Waveform		5	_	ns	

$\textbf{DATA RETENTION WAVEFORM} \ (\overline{\text{CE}} \ \text{or LB/UB Controlled})$

ORDERING INFORMATION Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
70	IC62VV12816L-70T IC62VV12816L-70B	TSOP-2 6*8mmTF-BGA
100	IC62VV12816L-100T IC62VV12816L-100B	TSOP-2 6*8mmTF-BGA

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
70	IC62VV12816L-70TI IC62VV12816L-70BI	TSOP-2 6*8mmTF-BGA
100	IC62VV12816L-100TI IC62VV12816L-100BI	TSOP-2 6*8mmTF-BGA

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
70	IC62VV12816LL-70T IC62VV12816LL-70B	TSOP-2 6*8mmTF-BGA
100	IC62VV12816LL-100T IC62VV12816LL-100B	TSOP-2 6*8mmTF-BGA

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
70	IC62VV12816LL-70TI IC62VV12816LL-70BI	TSOP-2 6*8mmTF-BGA
100	IC62VV12816LL-100TI IC62VV12816LL-100BI	TSOP-2 6*8mmTF-BGA

Integrated Circuit Solution Inc.

HEADQUARTER:

NO.2, TECHNOLOGY RD. V, SCIENCE-BASED INDUSTRIAL PARK,

HSIN-CHU, TAIWAN, R.O.C.

TEL: 886-3-5780333 Fax: 886-3-5783000

BRANCH OFFICE:

7F, NO. 106, SEC. 1, HSIN-TAI 5TH ROAD, HSICHIH TAIPEI COUNTY, TAIWAN, R.O.C.

TEL: 886-2-26962140 FAX: 886-2-26962252 http://www.icsi.com.tw