Document Title

32K x 8 Low Power SRAM with 3.3V

Revision History

Revision No	History	Draft Date	Remark
OA	Initial Draft	October 5,2001	

32K x 8 LOW VOLTAGE STATIC RAM

FEATURES

- Access time: 45, 70, 100 ns
- Low active power: 70 mW
- Low standby power
- $60 \mu \mathrm{~W}$ CMOS standby
- Fully static operation: no clock or refresh required
- TTL compatible inputs and outputs
- Single 3.3V power supply

DESCRIPTION

The ICSI IC62LV256 is a low power, 32,768 -word by 8 -bit static RAM. It is fabricated using ICSI's high-performance CMOS double-metal technology.

When $\overline{\mathrm{CE}}$ is HIGH (deselected), the device assumes a standby mode at which the power dissipation is reduced to $20 \mu \mathrm{~W}$ (typical) with CMOS input levels.

Easy memory expansion is provided by using an active LOW Chip Enable (CE) input and an active LOW Output Enable ($\overline{\mathrm{OE}}$) input. The active LOW Write Enable (VE) controls both writing and reading of the memory.

The IC62LV256 is pin compatible with other $32 \mathrm{~K} \times 8$ SRAMs in 300 mil DIP and SOJ, 330 mil SOP, and $8^{*} 13.4 \mathrm{~mm}$ TSOP-1 packages.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION 8x13.4mm TSOP-1

TRUTH TABLE

Mode	$\overline{\text { WE }}$	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	I/O Operation	Vcc Current
Not Selected (Power-down)	X	H	X	High-Z	IsB1, IsB2
Output Disabled	H	L	H	High-Z	Icc1, Icc2
Read	H	L	L	Dout	Icc1, Icc2
Write	L	L	X	Din	Icc1, Icc2

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
TBIAS	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TsTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	0.5	W
Iout	DC Output Current (LOW)	20	mA

Notes:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 5 \%$

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vor	Output HIGH Voltage	$\mathrm{Vcc}=$ Min., l OH $=-1.0 \mathrm{~mA}$		2.4	-	V
Vol	Output LOW Voltage	$\mathrm{Vcc}=$ Min., loL $=2.1 \mathrm{~mA}$		-	0.4	V
VIH	Input HIGH Voltage			2.2	$\mathrm{Vcc}+0.3$	V
VIL	Input LOW Voltage ${ }^{(1)}$			-0.3	0.8	V
ILI	Input Leakage	$\mathrm{GND} \leq \mathrm{VIN} \leq \mathrm{Vcc}$	Com. Ind.	$\begin{aligned} & -2 \\ & -5 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$
ILo	Output Leakage	GND \leq Vout \leq Vcc, Outputs Disabled	Com. Ind.	$\begin{aligned} & -2 \\ & -5 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$

Notes:

1. $\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ for pulse width less than 10 ns .
2. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

POWER SUPPLY CHARACTERISTICS ${ }^{(1)}$ (Over Operating Range)

Symbol	Parameter	Test Conditions		-45 ns		-70 ns		$-100 \mathrm{~ns}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
Icc1	Vcc Operating	$\begin{aligned} & \text { Vcc }=M a x ., \overline{C E}=V_{I L} \\ & \text { lout }=0 \mathrm{~mA}, \mathrm{f}=0 \end{aligned}$	Com.	-	20	-	20	-	20	mA
	Supply Current		Ind.	-	30	-	30	-	30	
Icc2	Vcc Dynamic Operating	$\begin{aligned} & \text { Vcc }=\operatorname{Max.,~\overline {CE}}=V_{I L} \\ & \text { lout }=0 \mathrm{~mA}, \mathrm{f}=\mathrm{f} \text { fux } \end{aligned}$	Com.	-	35	-	30	-	30	mA
	Supply Current		Ind.	-	45	-	40	-	40	
IsB1	TTL Standby Current (TTL Inputs)	$\mathrm{Vcc}=$ Max.,	Com.	-	2	-	2	-	2	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=V_{\mathrm{H}} \text { or } V_{I L} \\ & \mathrm{CE} \geq V_{I H}, f=0 \end{aligned}$	Ind.	-	5	-	5	-	5	
IsB2	CMOS Standby Current (CMOS Inputs)	$\mathrm{Vcc}=$ Max.,	Com.	-	90	-	90	-	90	$\mu \mathrm{A}$
		$\overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$,	Ind.	-	200	-	200	-	200	
		$\mathrm{VIN} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$, or								
		$\mathrm{VIN} \leq 0.2 \mathrm{~V}, \mathrm{f}=0$								

Notes:

1. At $f=f m a x$, address and data inputs are cycling at the maximum frequency, $f=0$ means no input lines change.

CAPACITANCE ${ }^{(1,2)}$

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	6	pF
Cout	Output Capacitance	Vout $=0 \mathrm{~V}$	5	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.
2. Test conditions: $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{Vcc}=3.3 \mathrm{~V}$.

READ CYCLE SWITCHING CHARACTERISTICS ${ }^{(1)}$ (Over Operating Range)

Symbol	Parameter	$-45 \mathrm{~ns}$		-70 ns		$-100 \mathrm{~ns}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
trc	Read Cycle Time	45	-	70	-	100	-	ns
taA	Address Access Time	-	45	-	70	-	100	ns
toha	Output Hold Time	2	-	2	-	2	-	ns
tace	$\overline{\mathrm{CE}}$ Access Time	-	45	-	70	-	100	ns
tooe	$\overline{\mathrm{OE}}$ Access Time	-	25	-	35	-	50	ns
tızoE ${ }^{(2)}$	$\overline{\mathrm{OE}}$ to Low-Z Output	0	-	0	-	0	-	ns
thzoE ${ }^{(2)}$	$\overline{\text { OE to High-Z Output }}$	0	20	0	25	0	25	ns
tızcE ${ }^{(2)}$	$\overline{\text { CE }}$ to Low-Z Output	3	-	3	-	3	-	ns
thzef ${ }^{(2)}$	$\overline{\text { CE }}$ to High-Z Output	0	20	0	25	0	25	ns
tpu ${ }^{(3)}$	$\overline{\mathrm{CE}}$ to Power-Up	0	-	0	-	0	-	ns
tpD ${ }^{(3)}$	$\overline{\mathrm{CE}}$ to Power-Down	-	30	-	50	-	50	ns

Notes:

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading specified in Figure 1a.
2. Tested with the load in Figure 1b. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage. Not 100% tested.
3. Not 100% tested.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0 V to 3.0V
Input Rise and Fall Times	5 ns
Input and Output Timing and Reference Levels	1.5 V
Output Load	See Figures 1a and 1b

AC TEST LOADS

Figure 1a.

Figure 1b.

AC WAVEFORMS

READ CYCLE NO. $1^{(1,2)}$

READ CYCLE NO. $2^{(1,3)}$

Notes:

1. $\bar{W} \mathrm{E}$ is HIGH for a Read Cycle.
2. The device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{VIL}$.
3. Address is valid prior to or coincident with $\overline{\mathrm{CE}}$ LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS ${ }^{(1,2,3)}$ (Over Operating Range)

Symbol	Parameter	-45 ns		-70 ns		$-100 \mathrm{~ns}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
twc	Write Cycle Time	45	-	70	-	100	-	ns
tsce	$\overline{\mathrm{CE}}$ to Write End	35	-	60	-	80	-	ns
taw	Address Setup Time to Write End	25	-	60	-	80	-	ns
tha	Address Hold from Write End	0	-	0	-	0	-	ns
tSA	Address Setup Time	0	-	0	-	0	-	ns
tPwE ${ }^{(4)}$	$\overline{\text { WE Pulse Width }}$	25	-	55	-	60	-	ns
tsd	Data Setup to Write End	20	-	30	-	35	-	ns
thd	Data Hold from Write End	0	-	0	-	0	-	ns

Notes:

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading specified in Figure 1a.
2. Tested with the load in Figure 1b. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage. Not 100% tested.
3. The internal write time is defined by the overlap of CE LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
4. Tested with OE HIGH.

AC WAVEFORMS

WRITE CYCLE NO. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{(1,2)}$

WRITE CYCLE NO. 2 ($\overline{\text { CE }}$ Controlled) $)^{(1,2)}$

Notes:

1. The internal write time is defined by the overlap of $\overline{C E}$ LOW and $\overline{W E}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
2. I/O will assume the High-Z state if $\overline{\mathrm{OE}} \geq \mathrm{VIH}$.

ORDERING INFORMATION
Commercial Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Speed (ns)	Order Part No.	Package
45	IC62LV256-45N	300 mil DIP
45	IC62LV256-45J	300mil SOJ
45	IC62LV256-45T	8*13.4mm TSOP-1
45	IC62LV256-45U	330 mil SOP
70	IC62LV256-70N	300 mil DIP
70	IC62LV256-70J	300mil SOJ
70	IC62LV256-70T	8*13.4mm TSOP-1
70	IC62LV256-70U	330 mil SOP
100	IC62LV256-100N	300 mil DIP
100	IC62LV256-100J	300mil SOJ
100	IC62LV256-100T	8*13.4mm TSOP-1
100	IC62LV256-100U	330 mil SOP

ORDERING INFORMATION
Industrial Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Speed (ns)	Order Part No.	Package
45	IC62LV256-45JI	300mil SOJ
45	IC62LV256-45TI	$8^{* 13.4 m m ~ T S O P-1 ~}$
45	IC62LV256-45UI	330mil SOP
70	IC62LV256-70JI	300mil SOJ
70	IC62LV256-70TI	$8 * 13.4 \mathrm{~mm}$ TSOP-1
70	IC62LV256-70UI	330mil SOP
100	IC62LV256-100JI	300mil SOJ
100	IC62LV256-100TI	8*13.4mm TSOP-1
100	IC62LV256-100UI	330mil SOP

