

Document Title

32K x 8 Low Power SRAM with 3.3V

Revision History

Revision No History <u>Draft Date</u> Remark

0A Initial Draft October 5,2001

32K x 8 LOW VOLTAGE CMOS STATIC RAM

FEATURES

- High-speed access time: 15, 20, 25 ns
- Automatic power-down when chip is deselected
- · CMOS low power operation
 - 255 mW (max.) operating
 - 0.18 mW (max.) CMOS standby
- TTL compatible interface levels
- Single 3.3V power supply
- Fully static operation: no clock or refresh required
- Three-state outputs

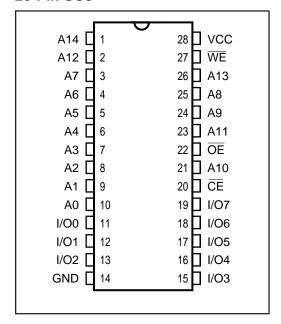
DESCRIPTION

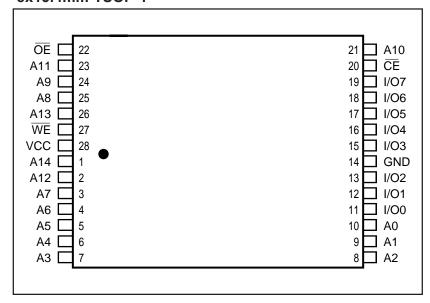
The ICSI IC62LV256L is a very high-speed, low power, 32,768-word by 8-bit static RAM. It is fabricated using ICSI's high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields access times as fast as 15 ns maximum.

When $\overline{\text{CE}}$ is HIGH (deselected), the device assumes a standby mode at which the power dissipation is reduced to 50 μ W (typical) with CMOS input levels.

Easy memory expansion is provided by using an active LOW Chip Enable (CE). The active LOW Write Enable (WE) controls both writing and reading of the memory.

The IC62LV256L is available in the JEDEC standard 28-pin 300mil SOJ and the 8*13.4mm TSOP-1 package.


FUNCTIONAL BLOCK DIAGRAM


ICSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2000, Integrated Circuit Solution Inc.

PIN CONFIGURATION 28-Pin SOJ

PIN CONFIGURATION 8x13.4mm TSOP-1

PIN DESCRIPTIONS

A0-A14	Address Inputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
1/00-1/07	Input/Output
Vcc	Power
GND	Ground

TRUTH TABLE

Mode	WE	CE	ŌĒ	I/O Operation	Vcc Current
Not Selected (Power-down)	Х	Н	Х	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	High-Z	Icc1, Icc2
Read	Н	L	L	D оит	Icc1, Icc2
Write	L	L	Χ	DIN	lcc1, lcc2

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	0.5	W
Іоит	DC Output Current (LOW)	20	mA

Note:

^{1.} Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to +70°C	3.3V +10%
Industrial	-40°C to +85°C	3.3V ± 10%

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., IoH = -2.0 mA		2.4	_	V
Vol	Output LOW Voltage	Vcc = Min., IoL = 4.0 mA		_	0.4	V
VIH	Input HIGH Voltage			2.2	Vcc + 0.3	V
VIL	Input LOW Voltage(1)			-0.3	0.8	V
lu	Input Leakage	GND ≤ Vin ≤ Vcc	Com. Ind.	-2 -5	2 5	μΑ
llo	Output Leakage	GND ≤ Vouт ≤ Vcc, Outputs Disabled	Com. Ind.	-2 -5	2 5	μΑ

Notes

- 1. $V_{IL} = -3.0V$ for pulse width less than 10 ns.
- 2. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		-15 ns Min. Max.	-20 ns Min. Max.	-25 ns Min. Max.	Unit
lcc1	Vcc Operating Supply Current	$Vcc = Max., \overline{CE} = VlL$ Iout = 0 mA, f = 0	Com. Ind.	— 50 — 60	— 50 — 60	— 50 — 60	mA
lcc2	Vcc Dynamic Operating Supply Current	$Vcc = Max., \overline{CE} = VIL$ $Iout = 0 \text{ mA}, f = fmax$	Com. Ind.	— 70 — 70	— 60 — 60	— 50 — 50	mA
ISB1	TTL Standby Current (TTL Inputs)	$\begin{aligned} & \text{Vcc} = \text{Max.,} \\ & \underline{\text{Vin}} = \text{ViH or ViL} \\ & \overline{\text{CE}} \geq \text{ViH, f} = 0 \end{aligned}$	Com. Ind.	— 3 — 5	— 3 — 5	— 3 — 5	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\frac{\text{Vcc} = \text{Max.,}}{\text{CE}} \ge \text{Vcc} - 0.2\text{V,}$ $\text{Vin} \ge \text{Vcc} - 0.2\text{V, or}$ $\text{Vin} \le 0.2\text{V, f} = 0$	Com. Ind.	— 50 — 100	— 50 — 100	— 50 — 100	μA

Note:

1. At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

CAPACITANCE(1,2)

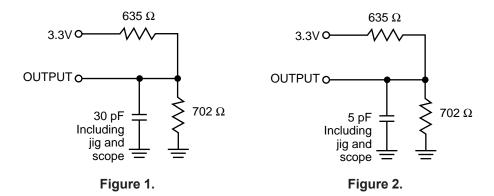
Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	pF
Соит	Output Capacitance	Vout = 0V	5	pF

Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{CC} = 3.3V$.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

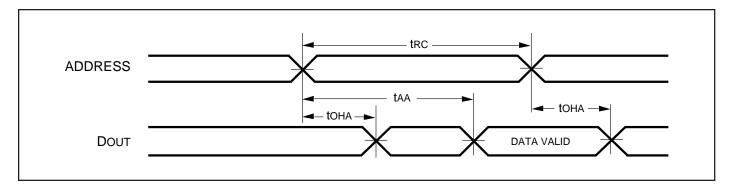
		-15	ins	-20	ns	-25	ins	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	15	_	20	_	25	_	ns
t AA	Address Access Time	_	15	_	20	_	25	ns
tона	Output Hold Time	2	_	2	_	2	_	ns
tace	CE Access Time	_	15	_	20	_	25	ns
t DOE	OE Access Time	_	7	_	8	_	9	ns
tLZOE ⁽²⁾	OE to Low-Z Output	0	_	0	_	0	_	ns
thzoe(2)	OE to High-Z Output	_	8	_	9	_	10	ns
tLZCE ⁽²⁾	CE to Low-Z Output	3	_	3	_	3	_	ns
thzce(2)	CE to High-Z Output	_	6	_	9	_	10	ns
t PU ⁽³⁾	CE to Power-Up	0	_	0	_	0	_	ns
t PD ⁽³⁾	CE to Power-Down	_	15	_	18	_	20	ns

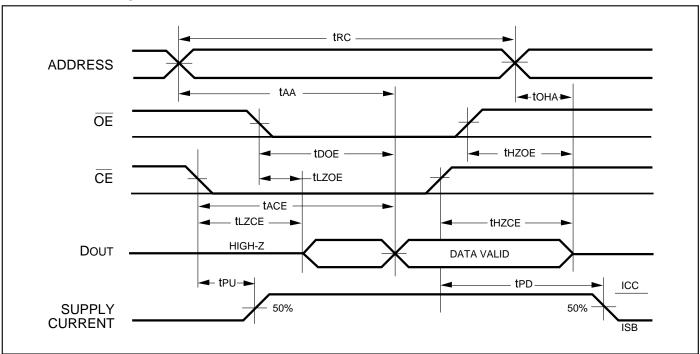

Notes:

- 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ± 500 mV from steady-state voltage. Not 100% tested.
- 3. Not 100% tested.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Levels	1.5V
Output Load	See Figures 1 and 2


AC TEST LOADS



AC WAVEFORMS

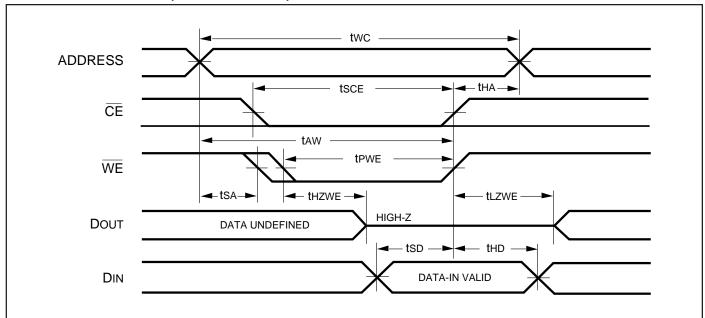
READ CYCLE NO. 1(1,2)

READ CYCLE NO. 2^(1,3)

Notes

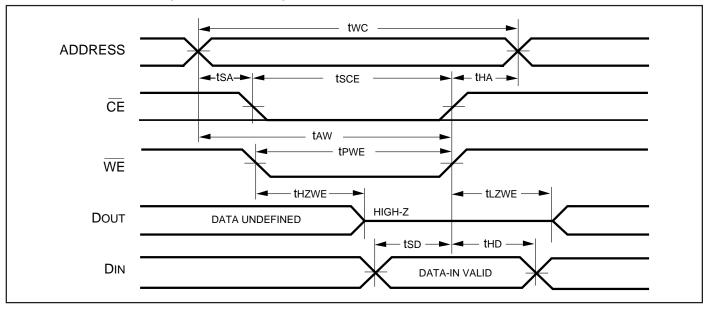
- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CE} = VIL$.
- 3. Address is valid prior to or coincident with $\overline{\sf CE}$ LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,3) (Over Operating Range)


		-15	ns	-20) ns	-25	ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	15	_	20	_	25	_	ns
tsce	CE to Write End	10	_	13	_	15	_	ns
taw	Address Setup Time to Write End	10	_	15	_	20	_	ns
t HA	Address Hold from Write End	0	_	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	_	0	_	ns
tpwe ⁽⁴⁾	WE Pulse Width	10	_	13	_	15	_	ns
tsp	Data Setup to Write End	8	_	10	_	12	_	ns
thd	Data Hold from Write End	0	_	0	_	0	_	ns
thzwe ⁽²⁾	WE LOW to High-Z Output	_	7	_	8	_	10	ns
tLZWE ⁽²⁾	WE HIGH to Low-Z Output	0	_	0	_	0	_	ns

Notes:

- 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 4. Tested with OE HIGH.


AC WAVEFORMS

WRITE CYCLE NO. 1 (WE Controlled)(1,2)

WRITE CYCLE NO. 2 (CE Controlled)(1,2)

Notes:

- 1. The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} \ge V_{IH}$.

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
15	IC62LV256L-15T IC62LV256L-15J	8*13.4mm TSOP-1 300mil SOJ
20	IC62LV256L-20T IC62LV256L-20J	8*13.4mm TSOP-1 300mil SOJ
25	IC62LV256L-25T IC62LV256L-25J	8*13.4mm TSOP-1 300mil SOJ

ORDERING INFORMATION

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
15	IC62LV256L-15TI IC62LV256L-15JI	8*13.4mm TSOP-1 300mil SOJ
20	IC62LV256L-20TI IC62LV256L-20JI	8*13.4mm TSOP-1 300mil SOJ
25	IC62LV256L-25TI IC62LV256L-25JI	8*13.4mm TSOP-1 300mil SOJ

Integrated Circuit Solution Inc.

HEADQUARTER:

NO.2, TECHNOLOGY RD. V, SCIENCE-BASED INDUSTRIAL PARK,

HSIN-CHU, TAIWAN, R.O.C.

TEL: 886-3-5780333 Fax: 886-3-5783000

BRANCH OFFICE:

7F, NO. 106, SEC. 1, HSIN-TAI 5^{TH} ROAD,

HSICHIH TAIPEI COUNTY, TAIWAN, R.O.C.

TEL: 886-2-26962140 FAX: 886-2-26962252

http://www.icsi.com.tw