

Integrated
Circuit
ICS9177
Systems, Inc.

High Frequency System Clock Generator

General Description

The ICS9177 is a multiple output clock generator ideal for high speed processor system applications. A single highspeed internal VCO is utilized to derive up to four simultaneous clock output frequencies. This enables output clock skew matching and the minimization of clock jitter. The internal VCO operates up to 350 MHz providing edge skew matched output clocks.

One differential PECL (Positive ECL) output pair provides a high speed processor clock. 12 TTL clock outputs are also provided for other system functions, such as bus clocks. Input selection pins are used to select the TTL output clock frequencies.

For information about ICS9177 customization optics, please contact ICS.

Block Diagram

Features

- Provides output frequencies up to 175 Mhz
- Internal VCO is divided into four skew-matched output frequencies (Out A, B, C, D)
- External clock feedback provides input to output skew matching
- Differential PECL clock output pair provided for high speed output (Out A)
- 12 TTL clock outputs (for Out B, C, D)
- Single 5 volt power supply voltage
- Internal loop filters
- 52-pin QFP package

52-Pin QFP

Pin Description

$\begin{gathered} \text { PIN } \\ \text { NUM- } \\ \text { BER } \end{gathered}$	$\begin{gathered} \text { PIN } \\ \text { NAME } \end{gathered}$	TYPE	DESCRIPTION
1	GND		
2	REFCLK	INPUT	from external oscillator
3	FBCLK	INPUT	external PLL Feedback path from one of the OutC outputs
4	DSEL1\#	INPUT	PLL divider mode control (Contains internal pull-up resistors)
5	DSELO\#	INPUT	
6	TESTEN	INPUT	Test mode ENABLE pin
7	TSTCLK	INPUT	External Test Clk
8	NC		
9	VCC		
10	GND		
11	PCOUT1	OUTPUT	TTL - Group 2 Programmable clock outputs
12	PCOUT0	OUTPUT	
13	GND		
14	VCC		
15	PBOUT1	OUTPUT	TTL - Group 1 Programmable clock outputs
16	PBOUT0	OUTPUT	
17	VCC		
18	GND		
19	PAOUT1	OUTPUT	TTL - Group 0 Programmable clock outputs
20	PAOUT0	OUTPUT	
21	VCC		
22	GND		
23	RESETL	INPUT	Low true divider reset pin
24	BOUT1	OUTPUT	TTL - 50 MHz output clock
25	BOUT0	OUTPUT	
26	VCC		
27	GND		

$\begin{gathered} \text { PIN } \\ \text { NUM- } \\ \text { BER } \end{gathered}$	$\begin{gathered} \text { PIN } \\ \text { NAME } \end{gathered}$	TYPE	DESCRIPTION
28	COUT2	OUTPUT	TTL - 25 MHz output clock
29	COUT1	OUTPUT	
30	VCC		
31	GND		
32	COUT0		TTL - 25 MHz output clock
33	DOUT0		TTL - 12.5 MHz output clock
34	GND		
35	NC		
36	AOUT1	OUTPUT	ECL $-100 \mathrm{MHz}, 75 \mathrm{MHz}$ or 50 MHz based on DSEL(1:0) pins
37	AOUT0	OUTPUT	
38	NC		
39	GND		
40	$\begin{aligned} & \hline \text { ECL+5V } \\ & \text { (same as } \\ & \text { VCC) } \end{aligned}$		
41	NC		
42	NC		
43	$\begin{aligned} & \text { ANALO- } \\ & \mathrm{G}+5 \mathrm{~V} \end{aligned}$		
44	ANALOG +5V		
45	AGND		
46	PCSEL1	INPUT	Programmable clock Group C select
47	PCSEL0	INPUT	
48	PBSEL1	INPUT	Programmable clock Group B select
49	PBSEL0	INPUT	
50	PASEL1	INPUT	Programmable clock Group A select
51	PASEL0	InPUT	
52	VC		

*Internal pull-up resistor

Typical System Usage

Example of System Block Diagram - Clocking

Function Tables

Table 1: Primary Function Table Typical System Usage

REF IN (MHx)	DSEL1\#	DSEL0\#	RSTL	TEST	\mathbf{f}^{1}	OUT \mathbf{A}	OUT \mathbf{B}	OUT \mathbf{C}	OUT \mathbf{D}	DESCRIPTION
25	0	0	1	0	200 MHz	$\mathbf{f} / 4$	$\mathbf{f} / 4$	$\mathbf{f} / 8$	$\mathbf{f} / 16$	Mode $0-1 / 1$
25	0	1	1	0	300 Mhz	$\mathbf{f} / 4$	$\mathbf{f} / 6$	$\mathbf{f} / 12$	$\mathbf{f} / 24$	Mode $1-3 / 2$
33	1	0	1	0	$200 / 264$ MHz	$\mathbf{f} / 2$	$\mathbf{f} / 4$	$\mathbf{f} / 8$	$\mathbf{f} / 16$	Mode $2-2 / 1$
25	1	1	1	0	X	1	1	1	1	Mode $3-$ A ll 1
-	X	X	0	X	X	0	0	0	0	Reset Mode
-	0	0	1	1	TCLK	$\mathbf{f} / 2$	$\mathbf{f} / 2$	$\mathbf{f} / 4$	$\mathbf{f} / 8$	Test Mode 0
-	0	1	1	1	TCLK	$\mathbf{f} / 2$	$\mathbf{f} / 3$	$\mathbf{f} / 6$	$\mathbf{f} / 12$	Test Mode 1
-	1	0	1	1	TCLK	$\mathbf{f} / 1$	$\mathbf{f} / 2$	$\mathbf{f} / 4$	$\mathbf{f} / 8$	Test Mode 2
-	1	1	1	1	TCLK	$\mathbf{f} / 2$	$\mathbf{f} / 2$	$\mathbf{f} / 2$	$\mathbf{f} / 2$	Test Mode 3

Table 2: CLOCK SELECT Blocks Function Table

PxSEL 1	PxSEL 0	Function of CLOCK SELECT Blocks
0	0	Both outputs at the same frequency as Out B.
0	1	Both outputs at the same frequency as Out C.
1	0	Both outputs at the same frequency as Out D.
1	1	Both outputs disabled in the high state.

Note: x=A, B, or C. (See Figure 1.)

ICS9177

Clock Output Timing Diagrams
1:1 frequency ratio - Mode 0

OutC

OutD

3:2 frequency ratio - Mode 1

OutC $「$

OutD
2:1 frequency ratio - Mode 2

[^0]ICS9177

Absolute Maximum Ratings

Supply voltage . 7V
Logic inputs . GND -.05 V to VDD +.05 V
Ambient operating temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Power Supply Specifications (Total Power consumption: approximately 750 mw)

> Table 3: DC Specifications

Supply	I (typ)	$\mathrm{I}(\mathrm{max})$	$\mathrm{V}(\mathrm{min})$	$\mathrm{V}($ typ $)$	$\mathrm{V}(\max)$
VDD	150 mA	200 mA	4.75 V	5 V	5.25 V

AC/DC Input Specification

Table 4: AC Specification of Inputs

Pin Type	$\operatorname{Vih}(\min)$	$\mathrm{Vil}(\max)$	tr	tf
All	2 V	0.8 V	3	3

Note: tr and tf are typical values for input

AC/DC Characteristics

Table 5: AC Specification type Out A.pecl Pins (CPUCLK)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage 1	Voh		3.87		4.67	volts
Output Low Voltage 1	Vol		2.63		3.19	volts
Output High Current	Ioh		38.7		46.7	ma
Output Low Current	Iol		26.3		31.9	ma
Rise Time $10-90 \%$	tr				1	ns
Fall Time $10-90 \%$	tf				1	ns
Duty cycle at $100 \mathrm{MHz} \mathrm{2,3}$	dcyc		45		55	$\%$

Test Load Conditions: $100 \Omega, 15 \mathrm{pF}$.

Note 1: The pecl levels are standard 10 kHz positive ECL values as shown in the table above.
Note 2: Pin skew and Duty cycle are measured at the signal swing mid-point.
Note 3: The skew and duty cycle numbers reflect the recommended clock distribution method shown in Figure 2

Table 6: AC Specification type Out B.ttl Pins (50 MHz)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	Voh		2.4	3.2	5	volts
Output Low Voltage	Vol		0	0.3	0.8	volts
Output High Current	Ioh		16			mA
Output Low Current	Iol				24	mA
Rise Time 10-90\%	tr		1	2	3	ns
Fall Time 10-90\%	tf		1	2	3	ns
Pin skew to other OutB.ttl signals ${ }^{1}$	tsk			250	500	ps
Duty cycle at 1.5 V	dcyc		45		55	\%
Delay from OutA.pecl signals ${ }^{2}$	tdly			. 2	. 5	ns
Skew associated with above delay ${ }^{3}$	tdlyskw				± 0.5	ns

Test Load Conditions: 500Ω, 15 pF .
Note 1: Pin skew is measured from the earliest rising edge of the group to the latest rising edge of the group.
Note 2: Delay is the intrinsic delay between the TTL drivers switching and the PECL driver switching. This is measured from the OutA.pecl signal at the signal swing mid-point to max output of the OutB.ttl signal's rising edge

Table 7: AC Specification type Out C.ttl Pins (25 MHz)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	Voh		2.4	3.2	5	volts
Output Low Voltage	Vol		0	0.3	0.8	volts
Output High Current	Ioh		16			mA
Output Low Current	Iol				24	mA
Rise Time $10-90 \%$	tr		1	2	3	ns
Fall Time $10-90 \%$	tf		1	2	3	ns
Pin skew to other OutC.ttl signals ${ }^{1}$	tsk			250	500	ps
Duty cycle at 1.5V	dcyc		45		55	$\%$
Spread to OutB.ttl signals ${ }^{2}$	tspb				500	ps

Test Load Conditions: $500 \Omega, 15 \mathrm{pF}$.
Note 1: Pin skew is measured from the earliest rising edge of the group to the latest rising edge of the group.
Note 2: Spread is the absolute difference between the rising edge of any OutC.ttl signal and the rising edge of any OutB.ttl signal

Table 8: AC Specification type Out D.ttl Pins (12.5 MHz)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	Voh		2.4	5	3.2	volts
Output Low Voltage	Vol		0	0.8	0.3	volts
Output High Current	Ioh		16			mA
Output Low Current	Iol			24		mA
Rise Time 10-90\%	tr		1	3	2	ns
Fall Time 10-90\%	tf		1	3	2	ns
Pin skew to other OutD.ttl signals	tsk			500	250	ps
Duty cycle at 1.5V	dcyc		45	55		$\%$
Delay from OutA.pecl signals ${ }^{1}$	tdly			.5		ns
Skew associated with above delay ${ }^{2}$	tdlyskw			± 1.3		ns

Test Load Conditions: 500W, 15 pF .
Note 1: Delay is the intrinsic delay between the TTL drivers switching and the PECL driver switching. This is measured from the OutA.pecl signal at the signal swing mid-point to max output of the OutD.ttl signal's rising edge

DETAIL "A"

52-Pin QFP Package

Ordering Information

ICS9177-01CF52
Example:

[^0]: Note: The arrow indicates the point where the clock sequence starts to repeat.

