IC S525-01/02
OSC aR ${ }^{\text {m }} \quad$ U ser C onfigurable Clock

D escription

The ICS525-01 and ICS525-02 OSC aR ${ }^{\mathrm{mm}}$ are the most flexible way to generate a high quality, high accuracy, high frequency clock output from an inexpensive crystal or clock input. The name O SC aR stands for OSCillator Replacement, as they are designed to replace crystal oscillators in almost any electronic system. The user can easily configure the device to produce nearly any output frequency from any input frequency by grounding or floating the select pins. N either microcontroller nor software nor device programmer are needed to set the frequency. Using PhaseLocked-Loop (PLL) techniques, the device accepts a standard fundamental mode, inexpensive crystal to produce output clocks up to 250 M H z. It can also produce a highly accurate output clock from a given input clock, keeping them frequency locked together.

For similar capability with a serial interface, use the ICS307. For simple multipliers to produce common frequencies, refer to the LOCO family of parts, which are smaller and more cost effective.

Features

- Packaged as 28 pin SSOP (150 mil body)
- ICS525-01 with output frequencies up to 160 M Hz
- IC S525-02 with output frequencies up to 250 M Hz
- User determines the output frequency by setting all internal dividers
- Eliminates need for custom oscillators
- No software needed
- O nline ICS525 calculator at www.icst.com/products/ics525inputForm.html
- Pull-ups on all select inputs
- Input crystal frequency of 5-27 M Hz
- Input clock frequency of $2-50 \mathrm{MHz}$
- Very low jitter
- Duty cycle of $45 / 55$ up to 200 M Hz
- O perating voltages of 3.0 to 5.5 V
- Ideal for oscillator replacement
- Industrial temperature versions available
- For Zero D elay, refer to the ICS527

Block D iagram

Pin Assignments

IC S525-01 Pin D escriptions

Pin \#	N ame	T ype	D escription
$1,2,24-28$	R5, R6, R0-R4	I(PU)	Reference divider word input pins determined by user. Forms a binary number from 0 to 127.
$3,4,5$	S0, S1, S2	I(PU)	Select pins for output divider determined by user. See table on page 3.
6,23	VDD	P	Connect to VDD.
7	X1/ICLK	X1	Crystal connection. Connect to a paralled resonant fundamental crystal, or input clock.
8	X2	X2	Crystal connection. Connect to a crystal, or leave unconnected for clock.
9,20	GND	P	Connect to ground.
$10-18$	V0-V8	I(PU)	VCO divider word input pins determined by user. Forms a binary number from 0 to 511.
19	PD	I(PU)	Power D own. Active low. T urns off entire chip when low. Clock outputs stop low.
21	CLK	0	Output Clock determined by status of R0-R6, V0-V8, S0-S2 and input frequency.
22	REF	0	Reference output. Buffered crystal oscillator (or clock) output.

IC S525-02 Pin D escriptions

Pin \#	N ame	T ype	D escription
1, 2, 24-28	R5, R6, R0-R4	I(PU)	Reference divider word input pins determined by user. Forms a binary number from 0 to 127.
3,4,5	S0, S1, S2	I(PU)	Select pins for output divider determined by user. See table on page 3.
6,23	VDD	P	Connect to VDD.
7	X1/ICLK	X1	Crystal connection. Connect to a parallel resonant fundamental crystal, or input clock.
8	X2	X2	Crystal connection. Connect to a crystal, or leave unconnected for clock.
9,20	GND	P	Connect to ground.
10-18	V0-V8	I(PU)	VCO divider word input pins determined by user. Forms a binary number from 0 to 511.
19	PDTS	I(PU)	Power D own and Tri-state. Active low. T urns off entire chip and tri-states the outputs when low.
21	CLK	0	O utput Clock determined by status of R0-R6, V0-V8, $50-\mathrm{S} 2$ and input frequency.
22	REF	0	Reference output. Buffered crystal oscillator (or clock) output.

Key: I(PU) =Input with internal pull-up resistor; X1, X2 = Crystal connections; $0=0$ utput;
$P=$ Power supply connection

IC 5525-01/02
OSC aR ${ }^{\text {Tm }}$ User Configurable Clock

ICS525-01 0 utput Divider and M aximum 0 utput Frequency T able

S2	S1	S0	CLK	Max. Output Frequency (M Hz)			
pin5	pin 4	pin 3	O utput Divider	VDD $=5 \mathrm{~V}$		VDD $=3.3 \mathrm{~V}$	
				$0-700^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	$0-70^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$
0	0	0	10	26	23	18	16
0	0	1	2	160	140	100	90
0	1	0	8	40	36	25	22
0	1	1	4	80	72	50	45
1	0	0	5	50	45	34	30
1	0	1	7	40	36	26	23
1	1	0	9	33.3	30	20	18
1	1	1	6	53	47	27	24

IC S525-02 0 utput Divider and Maximum 0 utput Frequency T able

S2	S1	S0	CLK	M ax. O utput Frequency (M Hz)	
pin 5	pin 4	pin 3	Output Divider	VDD $=5 \mathrm{~V}$	VDD $=3.3 \mathrm{~V}$
				-40 to $+85^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$
0	0	0	6	67	40
0	0	1	2	200	120
0	1	0	8	50	30
0	1	1	4	100	60
1	0	0	5	80	48
1	0	1	7	57	34
1	1	0	1	250	200
1	1	1	3	133	80

The ICS525-02 is only offered in the industrial temperature range.

External C omponents / C rystal Selection

The ICS525 requires two $0.01 \mu \mathrm{~F}$ decoupling capacitors to be connected between VDD and GND, one on each side of the chip. They must be connected close to the ICS525 to minimize lead inductance. No external power supply filtering is required for this device. A 33Ω series terminating resistor can be used next to the CLK and REF pins. The approximate total on-chip capacitance for a crystal is 16 pF , so a parallel resonant, fundamental mode crystal with this value of load (correlation) capacitance should be used. For example, using the IC S525-01 with crystals having a specified load capacitance greater than 16 pF , crystal capacitors may be connected from each of the pins X1 and X2 to Ground as shown in the Block Diagram on page 1. The value (in pF) of these crystal caps should be $=\left(C_{L}-16\right) * 2$, where C_{L} is the crystal load capacitance in pF . These external capacitors are only required for applications where the exact frequency is critical. For a clock input, connect to X1 and leave X2 unconnected (no capacitors on either).

OSC aR ${ }^{\text {m }} \quad$ U ser C onfigurable Clock

D etermining (setting) the output frequency

The user has full control in setting the desired output frequency over the range shown in the table on page 2. T o replace a standard oscillator, a user should connect the divider select input pins directly to ground (or VDD, although this is not required because of internal pull-ups) during Printed Circuit Board layout, so that the IC S525 automatically produces the correct clock when all components are soldered. It is also possible to connect the inputs to paralle I/O ports to switch frequencies. By choosing divides carefully, the number of inputs which need to be changed can be minimized. O bserve the restrictions stated below on allowed values of VDW and RDW.

IC 5525-01 Settings

U se the online IC S525 calculator at www.icst.com/products/ics525inputForm.html or alternatively, the output of the ICS525-01 can be determined by the following simple equation:
$C L K$ frequency $=$ Input frequency $\cdot 2 \cdot \frac{(V D W+8)}{(R D W+2)(0 D)}$
Where \quad Reference D ivider W ord (RD W) = 1 to 127 (0 is not permitted) VCO Divider W ord (VDW) = 4 to 511 (0, 1, 2, 3 are not permitted) O utput Divider (OD) = values on page 3

Also, the following operating ranges should be observed:
10 M Hz <Input frequency $\cdot 2 \cdot \frac{(\mathrm{VDW}+8)}{(\mathrm{RDW}+2)}<320 \mathrm{M} \mathrm{Hz}$ at 5.0V or

See Table on Page 3 for full details of maximum output.
$200 \mathrm{kHz}<\frac{\text { Input Frequency }}{(\text { RDW }+2)}$

IC S525-02 Settings

U se the online ICS525 calculator at www.icst.com/products/ics525inputForm.html or alternatively, the output of the ICS525-02 can be determined by the following simple equation:

```
\(C L K\) frequency \(=\) Input frequency \(\cdot 2 \cdot \frac{(V D W+8)}{(R D W+2)(O D)}\)
Where \(\quad\) Reference D ivider W ord (RDW) \(=0\) to 127
    VCO Divider W ord (VDW) = 0 to 511
    O utput Divider (OD) = values on page 3
```

Also, the following operating ranges should be observed:
10 M Hz <Input frequency •2 $\frac{(\mathrm{VDW}+8)}{(\mathrm{RDW}+2)}<400 \mathrm{M} \mathrm{Hz}$ at 5.0 V or
See T able on Page 3 for full details of maximum output. $200 \mathrm{kHz}<\frac{\text { Input Frequency }}{(\text { RDW }+2)}$

IC S525-01/02
 OSCaR ${ }^{\text {TM }}$
 U ser C onfigurable Clock

The dividers are expressed as integers, so that if a 66.66 M Hz output is desired from a 14.31818 input, the Reference Divider W ord (RDW) should be 59, and the VCO D ivider W ord (VDW) should be 276, with an O utput divider (OD) of 2. In this example, R6:R0 is $0111011, \mathrm{~V} 8: \mathrm{V} 0$ is 100010100, and $\mathrm{S} 2: \mathrm{S} 0$ is 001. Since all of these inputs have pull-up resistors, it is only necessary to ground the zero pins, namely V7, V6, V5, V3, V1, V 0, R6, R2, S2, and S1.

To determine the best combination of VCO, reference, and output divider, use the IC S525 Calculator on our W eb site: http://www.icst.com/products/ics525inputForm.html. This online form is easy to use and quickly shows you up to three options for these settings.

You may also fax this page to M icroClock/ICS at 408295 9818(fax), or contact us via our website at www.icst.com. Be sure to indicate the following:

Your N ame \qquad Company N ame \qquad Telephone \qquad
Respond by e-mail (list your e-mail address) \qquad or fax number \qquad
D esired input crystal/clock (in M Hz) \qquad D esired output frequency \qquad
$\mathrm{VDD}=3.3 \mathrm{~V}$ or 5 V \qquad D uty Cycle: 40-60\% \qquad or 45-55\% required \qquad

IC S525-01/02 O SC aR ${ }^{\text {m }}$ U ser C onfigurable Clock

Electrical Specifications

Parameter	Conditions	M inimum	Typical	M aximum	Units
ABSOLUTE MAXIM UM RATINGS (stresses be ond these can permanentl damage the device)					
Supply Voltage, VDD	Referenced to GND			7	V
Inputs	Referenced to GND	-0.5		VDD +0.5	V
Clock Output	Referenced to GND	-0.5		VDD +0.5	V
Ambient 0 perating T emperature	Commercial	0		70	${ }^{\circ} \mathrm{C}$
	Industrial	-40		85	${ }^{\circ} \mathrm{C}$
Soldering Temperature	M ax of 10 seconds			260	${ }^{\circ} \mathrm{C}$
Storage T emperature		-65		150	${ }^{\circ} \mathrm{C}$
DC CH ARACT ERISTICS (VDD $=3.3 \mathrm{~V}$ unless otherwise noted)					
Operating Voltage, VDD		3		5.5	V
Input High Voltage, VIH		2			V
Input Low Voltage, VIL				0.8	V
Input High Voltage, VIH, X1/ICLK only	ICLK (Pin 7)	(VDD/2)+1	VDD/2		V
Input Low Voltage, VIL, X 1/ICLK only	ICLK (Pin 7)		VDD/2	(VDD/2)-1	V
Output High Voltage, VOH	$10 \mathrm{H}=-12 \mathrm{~mA}$	VDD-0.4			V
Output Low Voltage, VOL	$10 \mathrm{~L}=12 \mathrm{~mA}$			0.4	V
ID D 0 perating Supply Current, 15 M Hz crystal	60M Hz out, N o Load		8		mA
ID D Operating Supply C urrent, Power D own	Pin 19=0		7		$\mu \mathrm{A}$
Short Circuit Current	CLK and REF outputs		± 55		mA
On-Chip Pull-up Resistor	All V, R, S pins and pin 19		270		k Ω
Input C apacitance	All V, R, S pins and pin 19		4		pF

Electrical Specifications (cont.)

Parameter	Conditions	M inimum	T ypical	M aximum	Units
AC CH ARACTERISTICS (VD D $=3.3 \mathrm{~V}$ unless otherwise noted)					
Input Frequency, crystal input		5		27	M Hz
Input Frequency, clock input		0.5		50	M Hz
O utput Frequency, VDD $=4.5$ to 5.5 V	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1		160	
ICS525-01, note 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1		140	M Hz
O utput Frequency, VDD $=3.0$ to 3.6 V	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1		100	
ICS525-01, note 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1		90	M Hz
O utput Frequency, VD D $=4.5$ to 5.5 V ICS525-02, note 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.5		250	M Hz
Output Frequency, VDD $=3.0$ to 3.6 V ICS525-02, note 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1		200	M Hz
O utput Clock Rise Time	0.8 to 2.0 V		1		ns
O utput Clock Fall Time	2.0 to 0.8 V		1		ns
Output Clock Duty Cycle, OD $=2,4,6,8$, or 10	at VDD/2	45	49 to 51	55	\%
Output Clock Duty Cycle, OD $=3,5,7$, or 9	at VDD/2	40		60	\%
O utput Clock Duty Cycle, OD $=1$ (-02 only)	at VDD/2	35		65	
Power D own Time, PD low to clocks stopped				50	ns
Power Up Time, PD high to clocks stable				10	ms
Absolute Clock Period Jitter, ICS525-01, N ote 2	D eviation from mean		± 140		ps
O ne Sigma Clock Period Jitter, IC S525-01, N ote 2	O ne Sigma		45		ps
Absolute Clock Period Jitter, ICS525-02, N ote 2	D eviation from mean		± 85		ps
O ne Sigma Clock Period Jitter, IC S525-02, N ote 2	O ne Sigma		30		ps

Note 1: The phase relationship between input and output can change at power up. For a fixed phase relationship see the ICS527.
Note 2: For 16 M Hz input, 100 M Hz output. Use the - 02 for lowest jitter.

Package Outline and Package Dimensions
 (For current dimensional specifications, see JEDEC Publication No. 95.)

28 pin SSO P

	Inches		M illimeters	
Symbol	M in	M ax	M in	M ax
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
b	0.008	0.012	0.20	0.30
C	0.007	0.010	0.18	0.25
D	0.337	0.344	8.55	
e	.025 BSC		0.635	
BSC				
E	0.228	0.244	5.80	6.20
E1	0.150	0.157	3.80	4.00
L	0.016	0.050	0.40	1.27

O rdering Information

Part/O rder N umber	M arking	Package	Temperature
IC S525-01R	$525-01 \mathrm{R}$	28 pin narrow SSO P	0 to $70{ }^{\circ} \mathrm{C}$
IC S525-01RT	$525-01 R$	28 pin SSO P on tape and reel	0 to $70{ }^{\circ} \mathrm{C}$
IC S525-01RI	$525-01 R I$	28 pin narrow SSO P	-40 to $+85^{\circ} \mathrm{C}$
IC S525-01RIT	$525-01 R I$	28 pin SSO P on tape and reel	-40 to $+85^{\circ} \mathrm{C}$
IC S525R-02I	ICS525R-02I	28 pin narrow SSO P	-40 to $+85^{\circ} \mathrm{C}$
IC S525R-02IT	IC S525R-02I	28 pin SSO P on tape and reel	-40 to $+85{ }^{\circ} \mathrm{C}$

[^0]O SC aR is a trademark of Integrated Circuit Systems

[^0]: While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Inc. (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

