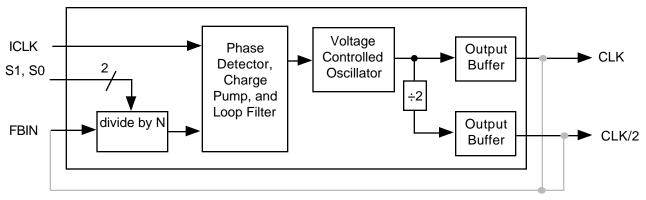


Description

The ICS570B is a high performance Zero Delay Buffer (ZDB) which integrates ICS' proprietary analog/digital Phase Locked Loop (PLL) techniques. The ICS570B, part of ICS' ClockBlocks[™] family, was designed as a performance upgrade to meet today's higher speed and lower voltage requirements. The zero delay feature means that the rising edge of the input clock aligns with the rising edges of both outputs, giving the appearance of no delay through the device. There are two outputs on the chip, one being a low-skew divide by two of the other. The device incorporates an all-chip power down/tri-state mode that stops the internal PLL and puts both outputs into a high impedance state.


The ICS570B is ideal for synchronizing outputs in a large variety of systems, from personal computers to data communications to graphics/video. By allowing off-chip feedback paths, the device can eliminate the delay through other devices.

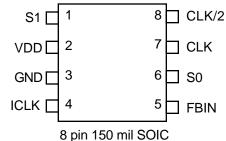
The ICS570B was done to improve input to output jitter from the original ICS570M and ICS570A verisons, and is recommended for all new 3.3 V only designs.

For 5V applications, use the ICS570A.

Features

- Packaged in 8 pin SOIC.
- Pin-for-pin replacement and upgrade to ICS570/ICS570A
- Functional equivalent to AV9170 (not a pinfor-pin replacement).
- Low input to output skew of 300 ps max (>60 MHz outputs).
- Low skew (100 ps) outputs.
- Ability to choose between 14 different multipliers from 0.5X to 32X.
- Input clock frequency up to 150 MHz at 3.3V.
- Can recover degraded input clock duty cycle.
- Output clock duty cycle of 45/55.
- Power Down and Tri-State Mode.
- Full CMOS clock swings with 25mA drive capability at TTL levels.
- Advanced, low power CMOS process.
- Operating voltage of 3.3 V (±5%).
- Industrial temperature version available

Block Diagram


External feedback can come from CLK or CLK/2 (see table on page 2).

PRELIMINARY INFORMATION

ICS570B Multiplier and Zero Delay Buffer

Pin Assignment

Clock Multiplier Decoding Table

(Multiplies input clock by shown amount)

		FBIN fr	om CLK	FBIN fro	m CLK/2	25°C ICLK Input Range	85°C ICLK Input Range
S1	S0	CLK	CLK/2	CLK	CLK/2	FB from CLK/2 *	FB from CLK/2 *
#1	#6	pin # 7	pin # 8	pin # 7	pin # 8	(3.3V, MHz)	(3.3V, MHz)
0	0	Po	wer Down	and Tri-St	ate	-	-
0	М	x3	x1.5	x6	x3	2.5 to 25	3 to 25
0	1	x4	x2	x8	x4	2.5 to 19	2.5 to 19
М	0	x8	x4	x16	x8	2.5 to 9.5	2.5 to 9.5
М	Μ	x6	x3	x12	x6	2.5 to 12.5	2.5 to 12.5
М	1	x10	x5	x20	x10	2.5 to 7.5	2.5 to 7.5
1	0	x1	÷2	x2	x1	5 to 75	8 to 75
1	М	x16	x8	x32	x16	2.5 to 5	2.5 to 5
1	1	x2	x1	x4	x2	2.5 to 37.5	4.5 to 37.5

0 = connect directly to ground.

M = leave unconnected (self-biases to VDD/2).

1 = connect directly to VDD.

*Input range with CLK feedback is double that for CLK/2.

Pin Descriptions

Number	Name	Туре	Description
1	S1	I	Select 1 for output clock. Connect to GND, VDD, or float per decoding table above.
2	VDD	Р	Connect to +3.3V.
3	GND	Р	Connect to ground.
4	ICLK	CI	Reference clock input.
5	FBIN	CI	Feedback clock input.
6	S0	I	Select 0 for output clock. Connect to GND, VDD, or float per decoding table above.
7	CLK	0	Clock output per table above.
8	CLK/2	0	Clock output per table above. Low skew divide by two of pin 7 clock.

Key: CI = clock input, I = input, O = output, P = power supply connection

External Components

The ICS570B requires a 0.01 µF decoupling capacitor to be connected between VDD and GND. It must be connected close to the ICS570B to minimize lead inductance. No external power supply filtering is required for this device. A 27 series terminating resistor can be used next to each output pin.

Electrical Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Units				
ABSOLUTE MAXIMUM RATINGS (Note 1)									
Supply Voltage, VDD	Referenced to GND			7	V				
Inputs	Referenced to GND	-0.5		VDD+0.5	V				
Clock Output	Referenced to GND	-0.5		VDD+0.5	V				
Ambient Operating Temperature	ICS570B	0		70	°C				
	ICS570BI	-40		85	°C				
Soldering Temperature	Max of 10 seconds			260	°C				
Storage temperature		-65		150	°C				
DC CHARACTERISTICS (VDD = 3.3	V)								
Operating Voltage, VDD		3.15		3.45	V				
Input High Voltage, VIH	ICLK, FBIN	2			V				
Input Low Voltage, VIL	ICLK, FBIN			0.8	V				
Input High Voltage, VIH	S0, S1	VDD-0.5			V				
Input High Voltage, VIM (mid-level)	S0, S1		VDD/2		V				
Input Low Voltage, VIL	S0, S1			0.5	V				
Output High Voltage, VOH, CMOS level	IOH=-4mA	VDD-0.4			V				
Output High Voltage, VOH	IOH=-12mA	2.4			V				
Output Low Voltage, VOL	IOL=12mA			0.4	V				
IDD Operating Supply Current, 50 in, 100 out	No Load, 3.3V		16		mA				
Short Circuit Current	Each Output		±100		mA				
Input Capacitance, S1, S0			5		pF				
AC CHARACTERISTICS (VDD = 3.3	V)								
Input Frequency, ICLK (see table on page 2)	FBIN from CLK/2		See Tab	le on Page 2					
Output Clock Frequency, CLK		10		150	MHz				
Output to output skew	Note 2		100	175	ps				
Input to Output Jitter	40-150 MHz		100-250		ps				
Input skew, ICLK to FBIN Note 2	CLK>30MHz	-300		300	ps				
Input skew, ICLK to FBIN Note 2	VDD=3.3V, CLK<10MHz	-600		600	ps				
Output Clock Rise Time, 3.3V	0.8 to 2.0V, note 3		0.75		ns				
Output Clock Fall Time, 3.3V	2.0 to 0.8V, note 3		0.75		ns				
Output Clock Duty Cycle	at VDD/2	45	49 to 51	55	%				

Notes

Stresses beyond these can permanently damage the device
Assumes clocks with same rise time, measured from rising edges at VDD/2.
With 27 terminating resistor and 15 pF loads.

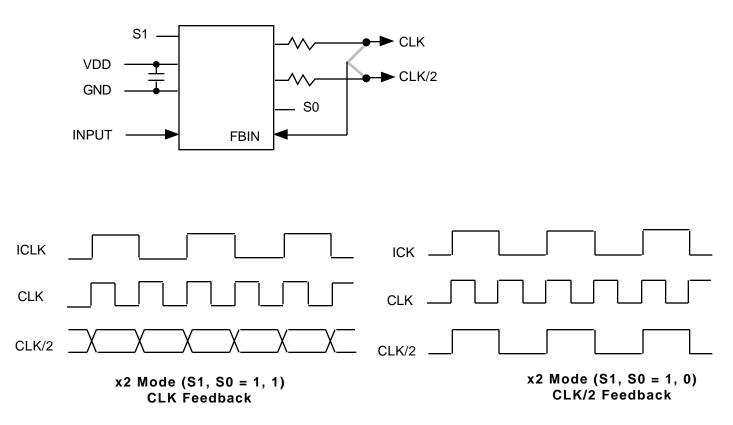
Clock Period Jitter Tables

All jitter values are considered typical measured at 25°C with 27 series termination resistor and 15pF loads on both CLK and CLK2. The feedback is from CLK2 to FBIN. Note that if an output is unused, it should be left unconnected to improve output jitter on the active output clocks.

		CLKIN	CLK = 50M			CLK/2 = 25M			
S1	S 0	(MHz)	Multiplie	Absolute	1 sigma	Multiplier	Absolute	1 sigma	
0	М	8.333	6x	±110	80	Зx	±55	20	
0	1	6.25	8x	±125	90	4x	±50	20	
Μ	0	3.125	16x	±130	90	8x	±55	20	
М	М	4.167	12x	±120	90	6x	±55	20	
Μ	1	2.5	20x	±115	90	10x	±55	20	
1	0	25	2x	±130	50	1x	±55	20	
1	М	1.5625	32x	±120	90	16x	±55	20	
1	1	12.5	4x	±120	60	2x	±55	20	

Absolute and One Sigma Jitter (ps), VDD = 3.3V

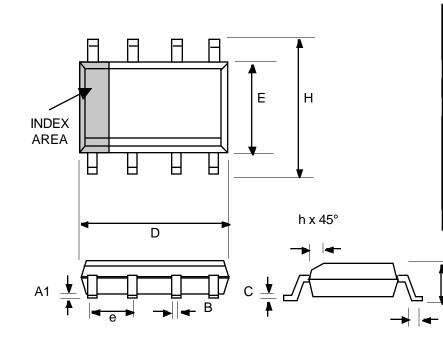
Absolute and One Sigma Jitter (ps), VDD = 3.3V


		CLKIN	CLK = 100M			CLK/2 = 50M		
S1	S0	(MHz)	Multiplie	Absolute	1 sigma	Multiplier	Absolute	1 sigma
0	М	16.667	6x	±100	70	Зx	±45	20
0	1	12.5	8x	±100	70	4x	±45	20
М	0	6.25	16x	±110	80	8x	±45	20
М	М	8.333	12x	±100	70	6x	±45	20
М	1	5	20x	±105	70	10x	±40	20
1	0	50	2x	±90	60	1x	±40	20
1	М	3.125	32x	±95	70	16x	±45	20
1	1	25	4x	±105	70	2x	±60	30

Absolute and One Sigma Jitter (ps), VDD = 3.3V

		CLKIN	CLK = 150M			CLK/2 = 75M		
S1	S0	(MHz)	Multiplier	Absolute	1 sigma	Multiplier	Absolute	1 sigma
0	М	25	6x	±115	70	Зx	±50	20
0	1	18.375	8x	±120	80	4x	±50	20
М	0	9.375	16x	±130	90	8x	±50	20
М	М	12.5	12x	±130	90	6x	±45	20
М	1	7.5	20x	±130	90	10x	±45	20
1	0	75	2x	±115	90	1x	±45	20
1	М	4.6875	32x	±130	90	16x	±50	20
1	1	37.5	4x	±110	70	2x	±60	20

Recommended Circuit:



Using CLK as the feedback will always result in synchronized rising edges between ICLK and CLK. However, the CLK/2 could be a falling edge compared with ICLK. Therefore, whenever possible, we recommend the use of CLK/2 feedback. This will synchronize the rising edges of all 3 clocks.

Package Outline and Package Dimensions

(For current dimensional specifications, see JEDEC Publication No. 95.)

8 pin (150 mil) SOIC

	Inch	es	Millimeters		
Symbol	Min	Max	Min	Max	
А	0.0532	0.0688	1.35	1.75	
A1	0.004	0.0098	0.10	0.25	
В	0.0130	0.0200	0.33	0.51	
С	0.0075	0.0098	0.19	0.25	
D	0.1890	0.1968	4.80	5.00	
Е	0.1497	0.1574	3.80	4.00	
е	.050 BS	SC	1.27 E	SC	
Н	0.2284	0.2440	5.80	6.20	
h	0.0099	0.0195	0.25	0.50	
L	0.0160	0.0500	0.41	1.27	

Ordering Information

Part/Order Number	Marking	Package/Comments	Temperature
ICS570B	ICS570B	8 pin SOIC	0 to 70 °C
ICS570BT	ICS570B	8 pin SOIC on tape and reel	0 to 70 °C
ICS570BI	ICS570BI	8 pin SOIC	-40 to +85 °C
ICS570BIT	ICS570BI	8 pin SOIC on tape and reel	-40 to +85 °C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.