
Description

The ICS571 is a high speed, high output drive, low phase noise Zero Delay Buffer (ZDB) which integrates ICS' proprietary analog/digital Phase Locked Loop (PLL) techniques. ICS introduced the world standard for these devices in 1992 with the debut of the AV9170, and updated that with the ICS570. The ICS571, part of ICS' ClockBlocks[™] family, was designed to operate at higher frequencies, with faster rise and fall times, and with lower phase noise. The zero delay feature means that the rising edge of the input clock aligns with the rising edges of both outputs, giving the appearance of no delay through the device. There are two outputs on the chip, one being a low-skew divide by two of the other.

The chip is ideal for synchronizing outputs in a large variety of systems, from personal computers to data communications to video. By allowing offchip feedback paths, the ICS571 can eliminate the delay through other devices. The use of dividers in the feedback path will enable the part to multiply by more than two.

Features

- Packaged in 8 pin SOIC.
- Can function as low phase noise x2 multiplier.
- Low skew outputs. One is ÷2 of other.
- Input clock frequency up to 160 MHz at 3.3V.
- Phase noise of better than -100 dBc/Hz from 1kHz to 1MHz offset from carrier
- Can recover poor input clock duty cycle.
- Output clock duty cycle of 45/55 at 3.3V.
- High drive strength for >100 MHz outputs.
- Full CMOS clock swings with 25mA drive capability at TTL levels.
- Advanced, low power CMOS process.
- Operating voltages of 3.0 to 5.5 V.

External feedback can come from CLK or CLK/2 (see table on page 2).

Block Diagram

Pin Assignment

ICLK 🗆	1	8	☐ FBIN
VDD 🗆	2	7	CLK
GND	3	6	
CLK/2 □	4	5	□ GND

Feedback Configuration Table and Frequency Ranges (at 3.3V)

Feedback From	CLK	CLK/2	Input Range
CLK	Input clock frequency	Input clock frequency/2	20 -160 MHz
CLK/2	2xInput clock frequency	Input clock frequency	10 - 80 MHz

Pin Descriptions

Number	Name	Туре	Description
1	ICLK	CI	Reference clock input.
2	VDD	Р	Connect to +3.3V or +5V. Must be same as other VDD.
3	GND	Р	Connect to ground.
4	CLK/2	0	Clock output per Table above. Low skew divide by two of pin 7 clock.
5	GND	Р	Connect to ground.
6	VDD	Р	Connect to +3.3V or +5V. Must be same as other VDD.
7	CLK	0	Clock output per Table above.
8	FBIN	CI	Feedback clock input. Connect to CLK or CLK/2 per table above.

Key: CI = clock input, I = input, O = output, P = power supply connection

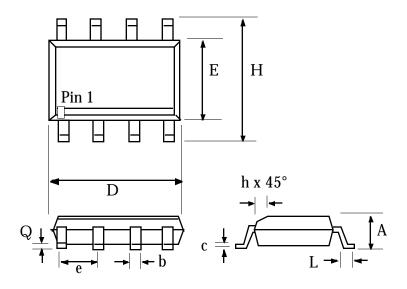
External Components

The ICS571 requires a 0.01 μ F decoupling capacitor to be connected between VDD and GND on each side of the chip (between pins 2 and 3, and also between pins 6 and 5). They must be connected close to the ICS571 to minimize lead inductance. No external power supply filtering is required for this device. A 33 terminating resistor can be used next to each output pin.

Low Phase Noise Zero Delay Buffer

Electrical Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Units
ABSOLUTE MAXIMUM RATINGS (Note 1)					
Supply Voltage, VDD	Referenced to GND			7	V
Inputs	Referenced to GND	-0.5		VDD+0.5	V
Clock Output	Referenced to GND	-0.5		VDD+0.5	V
Ambient Operating Temperature		0		70	°C
Soldering Temperature	Max of 10 seconds			260	°C
Storage temperature		-65		150	°C
DC CHARACTERISTICS (VDD = 5.0V or 3.3)	/ unless otherwise noted)				
Operating Voltage, VDD		3		5.5	V
Input High Voltage, VIH, ICLK, FBIN	Pins 1, 8	VDD/2+1	VDD/2		V
Input Low Voltage, VIL, ICLK, FBIN	Pins 1, 8		VDD/2	VDD/2-1	V
Output High Voltage, VOH, CMOS level	IOH=-4mA	VDD-0.4			V
Output High Voltage, VOH	IOH=-25mA	2.4			V
Output Low Voltage, VOL	IOL=25mA			0.4	V
IDD Operating Supply Current, 133 in, 133 out	No Load, 3.3V		34		mA
IDD Operating Supply Current, 50 in, 100 out	No Load, 3.3V		26		mA
Short Circuit Current	Each Output		±100		mA
Input Capacitance, ICLK, FBIN	_		5		pF
AC CHARACTERISTICS (VDD = 5.0V or 3.3V	unless otherwise noted)				
Input Frequency, clock input	FB from CLK	20		160	MHz
Input Frequency, clock input	FB from CLK/2	10		80	MHz
Skew CLK/2 with respect to CLK	Note 2	150	500	850	ps
Input clock to output connected to FBIN	Note 2	-500		500	ps
Output Clock Rise Time, 5V	0.8 to 2.0V, 15 pF load		0.3		ns
Output Clock Fall Time, 5V	2.0 to 0.8V, 15 pF load		0.4		ns
Output Clock Rise Time, 3.3V	0.8 to 2.0V, 15 pF load		0.45		ns
Output Clock Fall Time, 3.3V	2.0 to 0.8V, 15 pF load		0.55		ns
Output Clock Duty Cycle, 5V	at VDD/2	40	52 to 55	60	%
Output Clock Duty Cycle, 3.3V	at VDD/2	45	49 to 51	55	%
Absolute Clock Period Jitter, CLK, note 3	Deviation from mean		±80		ps
One Sigma Clock Period Jitter, CLK, note 3			50		ps
Phase Noise, relative to carrier	1kHz offset		-105		dBc/Hz
Phase Noise, relative to carrier	100kHz offset		-115		dBc/Hz


Notes: 1. Stresses beyond these can permanently damage the device.

2. Assumes clocks with same rise time, measured from rising edges at VDD/2. Measured with 33 termination resistors and 15 pF loads. Applies to both 3.3V and 5V operation.

3. CLK/2 has lower jitter (both absolute and one sigma, in ps) than CLK.

Package Outline and Package Dimensions

8 pin SOIC

	Inch	es	Millin	neters
Symbol	Min	Max	Min	Max
Α	0.055	0.068	1.397	1.7272
b	0.013	0.019	0.330	0.483
D	0.185	0.200	4.699	5.080
Е	0.150	0.160	3.810	4.064
Н	0.225	0.245	5.715	6.223
e	.050 BSC		1.27 BSC	
h		0.015		0.381
L	0.016	0.035	0.406	0.889
Q	0.004	0.01	0.102	0.254

Ordering Information

Part/Order Number	Marking	Package	Temperature
ICS571M	ICS571M	8 pin SOIC	0 to 70 °C
ICS571MT	ICS571M	8 pin SOIC on tape and reel	0 to 70 °C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

ClockBlocks is a trademark of ICS