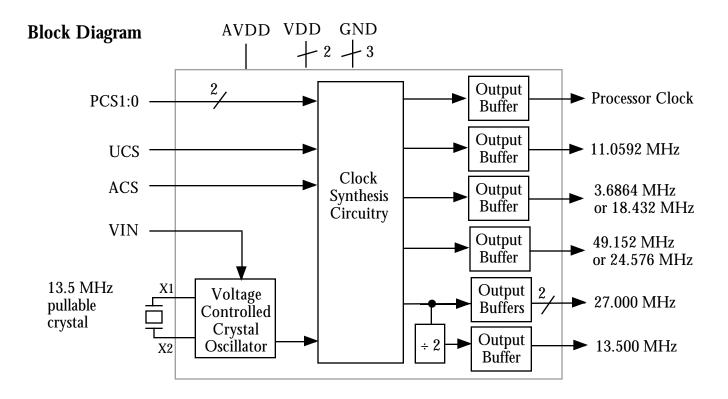
MK2771-12 VCXO and Set-Top Clock Source


Description

The MK2771-12 is a low cost, low jitter, high performance VCXO and clock synthesizer designed for set-top boxes. The on-chip Voltage Controlled Crystal Oscillator accepts a 0 to 3V input voltage to cause the output clocks to vary by ±100 ppm. Using MicroClock's patented VCXO and analog Phase-Locked Loop (PLL) techniques, the device uses an inexpensive 13.5 MHz crystal input to produce multiple output clocks including a selectable processor clock, selectable UART and audio clocks, a fixed 11.0592 MHz, and two low skew copies of the 27 MHz. All clocks are frequency locked to the 27.00 MHz output (and to each other) with zero ppm error, so any output can be used as the VCXO output.

This chip directly replaces the MK2771-02 when a 13.5 MHz input crystal is substituted for the 14.31818 MHz used on the -02. Additionally, the -12 adds 24.576 MHz to the ACLK.

Features

- Packaged in 20 pin SOIC
- Pin for pin and functional upgrade to MK2771-02
- Uses an inexpensive 13.5 MHz crystal
- On-chip patented VCXO with pull range of 200 ppm
- VCXO tuning voltage of 0 to 3 V
- Processor frequency of 16.67 MHz, 20 MHz, 32 MHz, 40 MHz, or 50 MHz
- Zero ppm synthesis error in all clocks (all exactly track 27MHz VCXO) - patented
- 25 mA output drive capability at TTL levels
- Advanced, low power, sub-micron CMOS process
- 5 V operating voltage

MK2771-12 NOTICE OF LOCK VCXO and Set-Top Clock Source

Pin Assignment

PCS0 □	1		20	□ ACS
PC30	1		۷0	LI ACS
X2 □	2		19	□ UCS
X1 □	3	\leq	18	□ 27M
AVDD□	4	$\overline{\mathbf{x}}$	17	□ GND
VIN □	5	27	16	□ 27M
VDD □	6	71	15	□VDD
GND □	7	<u> </u>	14	□ GND
PCLK □	8	2	13	□ 11.06M
UCLK □	9		12	□ PCS1
ACLK □	10		11	□ 13.5M

Processor Clock Select Table

PCS1	PCS0	PCLK (MHz)
0	0	50.000
0	1	16.667
M	0	test
M	1	32.000
1	0	40.000
1	1	20.000

 $0 = connect \ directly \ to \ ground, \ 1 = connect \ directly \\ to \ VDD, \ M = leave \ floating \ or \ unconnected$

UART Clock Table

Office (JIOCH I UDIC
UCS	UCLK (MHz)
0	18.432
1	3.6864

ACLK Select Table

ACS	ACLK (MHz)			
0	49.152			
1	24.576			

Pin Descriptions

Number	Name	Туре	Description
1	PCS0	I	Processor Clock Select 0. Selects PCLK on pin 8. See table above.
2	X2	0	Crystal connection. Connect to a pullable 13.5 MHz crystal.
3	X1	I	Crystal connection. Connect to a pullable 13.5 MHz crystal.
4	AVDD	P	Analog VDD. Connect to +5V.
5	VIN	I	Voltage Input to VCXO. Zero to 3V signal which controls the frequency of the VCXO.
6	VDD	P	Connect to +5V.
7	GND	P	Connect to ground.
8	PCLK	О	Processor clock output determined by status of PCS1,0. See table above.
9	UCLK	О	UART clock output determined by status of UCS. See table above.
10	ACLK	О	49.152 MHz or 24.576 MHz clock output determined by ACS. See table above
11	13.5M	0	13.5 MHz clock output. Divide by two of the 27MHz VCXO output.
12	PCS1	TI	Processor Clock Select 1. Selects PCLK on pin 8. See table above.
13	11.06M	0	11.0592 MHz clock output.
14	GND	P	Connect to ground.
15	VDD	P	Connect to +5V.
16	27M	0	27.00 MHz VCXO clock output.
17	GND	P	Connect to ground.
18	27M	0	27.00 MHz VCXO clock output.
19	UCS	I	UART Clock Select. Selects UCLK on pin 9. See table above.
20	ACS	I	ACLK Select. Selects ACLK on pin 10. See table above.

Key: I = Input, TI = Tri-level input, O = output, P = power supply connection

MDS 2771-12 A Revision 061699 Printed 11/16/00 MicroClock Division of ICS • 525 Race Street • San Jose • CA • 95126•(408)295-9800tel•(408)295-9818fax

MK2771-12 VCXO and Set-Top Clock Source

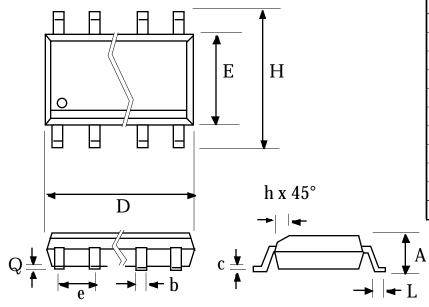
Electrical Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Units		
ABSOLUTE MAXIMUM RATINGS (note 1)							
Supply voltage, VDD	Referenced to GND			7	V		
Inputs and Clock Outputs	Referenced to GND	-0.5		VDD+0.5	V		
Ambient Operating Temperature		0		70	°C		
Soldering Temperature	Max of 10 seconds			260	°C		
Storage temperature		-65		150	°C		
DC CHARACTERISTICS (VDD = 5	5.0V unless noted)						
Operating Voltage, VDD		4.75		5.25	V		
Input High Voltage, VIH, X1 pin only		3.5	2.5		V		
Input Low Voltage, VIL, X1 pin only			2.5	1.5	V		
Input High Voltage, VIH (except PCS1)		2			V		
Input Low Voltage, VIL (except PCS1)				0.8	V		
Input High Voltage, VIH, PCS1 only		VDD-0.5			V		
Input Low Voltage, VIL, PCS1 only				0.5	V		
Output High Voltage, VOH	IOH=-25mA	2.4			V		
Output Low Voltage, VOL	IOL=25mA			0.4	V		
Output High Voltage, VOH, CMOS level	IOH=-8mA	VDD-0.4			V		
Operating Supply Current, IDD	No Load, note 2		60		mA		
Short Circuit Current	Each output		±100		mA		
Input Capacitance	-		7		pF		
Frequency synthesis error	All clocks			0	ppm		
VIN, VCXO control voltage		0		3	V		
AC CHARACTERISTICS (VDD = 5	.0V unless noted)						
Input Frequency			13.50000		MHz		
Output Clock Rise Time	0.8 to 2.0V			1.5	ns		
Output Clock Fall Time	2.0 to 0.8V			1.5	ns		
Output Clock Duty Cycle	At 1.4V	40		60	%		
Maximum Absolute Jitter, short term			200		ps		
Skew of 27 MHz outputs	Rising edges at 1.4V	-500	0	500	ps		
27 MHz output pullability, note 3	0V VIN 3V		±100		ppm		

Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings could cause permanent damage to the device. Prolonged exposure to levels above the operating limits but below the Absolute Maximums may affect device reliability.

2. With PCLK at 50 MHz.

3. With a pullable crystal that conforms to ICS' specifications.


External Components

The MK2771-12 requires a minimum number of external components for proper operation. Decoupling capacitors of $0.01\mu F$ should be connected between each VDD and GND, and between AVDD and GND, as close to the MK2771-12 as possible. A series termination resistor of 33 may be used for each clock output. The 13.5 MHz crystal must be connected as close to the chip as possible. The 13.5 MHz crystal should be a parallel mode, pullable, with load capacitance of 16 pF. Consult MicroClock for recommended suppliers. Only the crystal should be connected to X1 and X2; do not connect load capacitors to these pins.

MDS 2771-12 A 3 Revision 061699 Printed 11/16/00

MK2771-12 VCXO and Set-Top Clock Source

Package Outline and Package Dimensions

20 pin SOIC

	Inches		Mill	imeters		
Symbol	Min	Max	Min	Max		
Α	0.092	0.104	2.3368	2.6416		
b	0.014	0.019	0.356	0.483		
С	0.009	0.012	0.229	0.305		
D	0.490	0.512	12.446	13.005		
E	0.290	0.300	7.366	7.620		
Н	0.394	0.419	10.008	10.643		
e	.050 BSC		1.27 BSC			
h		0.016		0.406		
L	0.016	0.035	0.406	0.889		
Q	0.003	0.011	0.076	0.279		

Ordering Information

Part/Order Number	Marking	Shipping packaging	Package	Temperature
MK2771-12S	MK2771-12S	tubes	20 pin SOIC	0-70°C
MK2771-12STR	MK2771-12S	tape and reel	20 pin SOIC	0-70°C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Inc. (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.