D escription

TheM K74CB115 Buffalo ${ }^{\text {TM }}$ is a monolithic CM OS high speed clock driver. It consists of a single input to sixteen low-skew output, noninverting clock drivers. The chip is capable of driving 16 CM OS loads up to 200 M Hz with a maximum of 250 ps output to output skew. The M K 74C B115 is packaged in thetiny 28 pin SSO P, which uses the same board space as the narrow 16 pin SOIC.

Family of ICS Parts

The M K74CB115 Buffalo ${ }^{\text {TM }}$ is designed to be used with ICS's clock synthesizer devices. The inputs of the Buffalo are matched to the outputs of ICS clock synthesizers. C onsult ICS for applications support.

Features

- Tiny 28 pin SSO P (150 mil) package
- O ne input to sixteen output clock drivers
- 0 utputs are skew matched to within 250 ps
- $3.3 \mathrm{~V}+10 \%$ or $5 \mathrm{~V} \pm 10 \%$ supply voltage
- 30 utput Enables allow configuration as 1 to 4, 1 to 6,1 to 10,1 to 12 or 1 to 16 buffer
- C lock speeds up to 200 M Hz

Block D iagram

M K74C B115
1 to 16 Buffalo $^{\text {™ }}$ C lock D river

Pin Assignment

Suggested Layout

For simplicity, series terminating resistors (required) are not shown for the outputs, but should be placed as close to the device as possible. It is most critical to have the $0.1 \mu \mathrm{~F}$ decoupling capacitors closest.
(V) = connect to VDD G = connect to GND

Pin D escriptions

Number	Name	Type	D escription
1	OE1	1	O utput Enable. Tri-states Q2 to Q 7 clock outputs when this input is low. Internal pull-up.
2,3	Q0, Q1	0	Clock outputs.
4, 7, 8	Q2, Q3, Q4	0	Clock outputs.
5,6	VDD	P	Power supply. Connect to +3.3 V or 5 V .
9, 10	GND	P	Connect to ground.
11, 12, 13	Q5, Q6, Q7	0	Clock outputs.
14	IN	1	Clock input for 16 buffers.
15	OEO	1	O utput Enable. Tri-states Q 8 to Q13 clock outputs when this input is low. Internal pull-up.
16, 17, 18	Q8, Q 9, Q10	0	Clock outputs.
19, 20	GND	P	Connect to ground.
21, 22, 25	Q11, Q 12, Q13	0	Clock outputs.
23,24	VDD	P	Power supply. Connect to +3.3 V or 5 V .
26, 27	Q 14, Q 15	0	Clock outputs.
28	OE2	I	O utput Enable. Tri-states Q 0, Q1, Q 15 and Q 14 clock outputs when this input is low. Internal pull-up.

Type: $\mathrm{I}=$ Input, 0 = output, $\mathrm{P}=$ power supply connection

M K74C B115
1 to 16 Buffalo ${ }^{\text {Tm }}$
C lock D river

Electrical Specifications

Parameter	Conditions	M inimum	Typical	M aximum	Units
ABSOLUTE MAXIM M R RATIN GS (N ote 1)					
Supply Voltage, VDD	R eferenced to GND			7	V
Inputs	Referenced to GND	0.5		VDD +0.5	V
Clock O utputs	Referenced to GND	0.5		VDD +0.5	V
Ambient O perating T emperature		0		70	${ }^{\circ} \mathrm{C}$
Soldering Temperature	M ax of 20 seconds			260	${ }^{\circ} \mathrm{C}$
Storage T emperature		-65		150	${ }^{\circ} \mathrm{C}$
DC C H ARAC TERISTIC (VD $=3.3 \mathrm{~V}$ unless noted)					
O perating V oltage, VDD		3.0	3.3	5.5	V
Input High Voltage, VIH (IN pin)	Input clock	(VDD/2)+1	VDD/2		V
Input Low Voltage, VIL (IN pin)	Input clock		VDD/2	(VDD/2)-1	V
Input High Voltage, VIH (OE pins)		2.0			V
Input Low Voltage, VIL (OE pins)				0.8	V
O utput High Voltage, 3.3V	$10 \mathrm{H}=8 \mathrm{~mA}$	VDD-0.4			V
O utput High Voltage, 3.3V	$1 \mathrm{OH}=12 \mathrm{~mA}$	2.4			V
Output Low V oltage, 3.3V	$10 \mathrm{~L}=12 \mathrm{~mA}$			0.8	V
O perating Supply Current, ID , at 100 M Hz	No Load		55		mA
O utput Impedance			14		Ω
Short C ircuit C urrent, 3.3V	Each output		± 50		mA
On-Chip Pull-up Resistor	OEO, OE1, OE2		250		k Ω
Input Capacitance			5		pF
AC CH ARACTERISTICS (VD D $=3.3 \mathrm{~V}$ unless noted)					
Input Clock Frequency with load =8 pF	N ote 4, 5	0		200	M Hz
Propagation D elay with load $=15 \mathrm{pF}$			1.4	3	ns
Output Clock Rise Time	0.8 to 2.0 V			2	ns
O utput Clock Fall Time	2.0 to 0.8 V			2	ns
O utput Clock Rising Edge Skew	At VDD/2. Note 2		100	250	ps
O utput Enable Time, OE high to output on				20	ns
O utput D isable Time, OE low to tri-state				20	ns

N otes:

1. Stresses beyond those listed under Absolute M aximum Ratings could cause permanent damage to the device. Prolonged exposure to levels above the operating limits but below the Absolute M aximums may affect device reliability.
2. Between any two outputs, with equal loading.
3. At VDD $=3.3 \mathrm{~V}, 70^{\circ} \mathrm{C}$, seriestermination of 33Ω per pin, 8 pF load per pin.
4. Seediscussion and graph of speed versus load, Graph 1 on following page.

1 to 16 Buffalo ${ }^{\text {TM }}$
 C lock D river

M K74C B115

M aximum Speed/Application N otes

The maximum speed at which the chip can operate is limited by power dissipation of the package. Graph 1 shows the operating frequency plotted against load capacitance per pin for a die temperature of $125^{\circ} \mathrm{C}$. This is at VDD $=3.3 \mathrm{~V}, 70^{\circ} \mathrm{C}$ and with 33Ω series termination resistor. The termination resistors are essential because they allow a large proportion of the total power to be dissipated outside the package. Reducing or eliminating the series termination will cause an increase in die temperature. It is not recommended to operate the chip at die temperature greater than $125^{\circ} \mathrm{C}$. Also note that the load capacitance per pin must include PC board parasitics such as trace capacitance. ICS has other buffers specified to 250 M Hz with heavier loads.

If not all outputs of the chip are used, it is possible to operate the chip faster with larger loads. U nused outputs should be left unconnected. Consult ICS for your specific requirement.

Load C apacitance/per pin (pF), all 16 outputs loaded

Graph 1

MK74C B115
M aximum Speed at 3.3 V

M K74C B115
1 to 16 Buffalo ${ }^{\text {Tm }}$

Package 0 utline and Package Dimensions
 (For current dimensional specifications, see JED EC Publication No. 95.)

28 pin SSO P

	Inches		M illimeters	
Symbol	M in	M ax	M in	M ax
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.102	0.254
b	0.008	0.012	0.203	0.305
C	0.007	0.010	0.191	0.254
D	0.386	0.394	9.804	10.008
e	.025 BSC	0.635 BSC		
E	0.228	0.244	5.791	6.198
E1	0.150	0.157	3.810	3.988
L	0.016	0.050	0.406	1.270

O rdering Information

Part/O rder N umber	M arking	Package	Temperature
M K74CB115R	M K74CB115R	28 pin SSO P	$0-70^{\circ} \mathrm{C}$
M K74CB115RTR	MK74CB115R	Add Tape \& Reel	$0-70^{\circ} \mathrm{C}$

W hile the information presented herein has been checked for both accuracy and reliability, IC S Incorporated assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IC S. IC S reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

Buffalo is a trademark of ICS Incorporated

