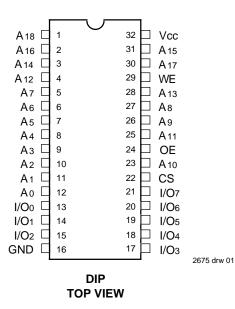
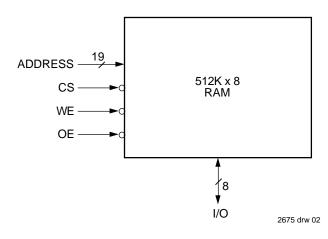


512K x 8 CMOS STATIC RAM MODULE

FEATURES:


- High-density 4-megabit (512K x 8) Static RAM module
- Fast access time: 25ns (max.) Surface mounted plastic packages on a 32-pin, 600 mil FR-4 DIP substrate
- Single 5V (±10%) power supply
- Inputs/outputs directly TTL-compatible

DESCRIPTION:


The IDT7MB4048 is a 4-megabit (512K x 8) Static RAM module constructed on a multilayer epoxy laminate (FR-4) substrate using four 1 megabit SRAMs and a decoder. The IDT7MB4048 is available with access times as fast as 25ns. The IDT7MB4048 is packaged in a 32-pin FR-4 DIP resulting in the JEDEC footprint in a package 1.6 inches long and 0.6 inches wide.

All inputs and outputs of the IDT7MB4048 are TTL-compatible and operate from a single 5V supply. Fully asynchronous circuitry requires no clocks or refresh for operation and provides equal access and cycle times for ease of use.

PIN CONFIGURATION

FUNCTIONAL BLOCK DIAGRAM

PIN NAMES

I/O0-7	Data Inputs/Outputs
A0-18	Addresses
CS	Chip Select
WE	Write Enable
ŌĒ	Output Enable
Vcc	Power
GND	Ground

2675 tbl 01

The IDT logo is a registered trademark of Integrated Device Technology Inc.

TRUTH TABLE

Mode	<u>CS</u>	ŌĒ	WE	Output	Power
Standby	Н	Х	Х	High-Z	Standby
Read	L	L	Н	Dout	Active
Read	L	Н	Н	High-Z	Active
Write	L	Х	L	Din	Active

2675 tbl 02

2675 tbl 03

2675 tbl 04

CAPACITANCE⁽¹⁾ (T_A = +25°C, f = 1.0MHz)

Symbol	Parameter	Conditions	Тур.	Unit
CIN	Input Capacitance	VIN = 0V	35	рF
CIN(C)	Input Capacitance (\overline{CS})	VIN = 0V	8	рF
Соит	Output Capacitance	Vout = 0V	35	pF

NOTE:

1. This parameter is guaranteed by design, but not tested.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

RECOMMENDED OPERATING

Symbol Rating		Commercial	Unit
Vterm	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
ΤΑ	Operating Temperature	0 to +70	°C
TBIAS	Temperature Under Bias	-10 to +85	°C
TSTG	Storage Temperature	-55 to +125	°C
Ιουτ	DC Output Current	50	mA

NOTE:

Grade

Commercial

2675 tbl 05

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

GND

0V

TEMPERATURE AND SUPPLY VOLTAGE Ambient Temperature

0°C to +70°C

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5	5.5	V
GND	Supply Voltage	0	0	0	V
Vін	Input High Voltage	2.2	_	6	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾		0.8	V

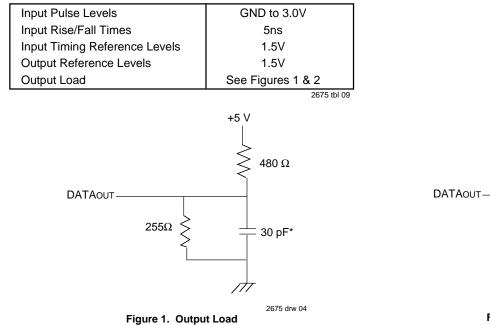
NOTE:

1. $V_{IL} = -2.0V$ for pulse width less than 10ns.

DC ELECTRICAL CHARACTERISTICS

 $(VCC = 5V \pm 10\%, TA = 0^{\circ}C \text{ to } +70^{\circ}C)$

			7MB4048SxxP		
Symbol	Parameter	Test Conditions	Min.	Max.	Unit
ILI	Input Leakage	Vcc = Max., VIN = GND to Vcc		8	μA
Ilo	Output Leakage	Vcc = Max., CS = Vін, Vouт = GND to Vcc	_	8	μA
Vol	Output Low Voltage	Vcc = Min., IoL = 8mA		0.4	V
Vон	Output High Voltage	Vcc = Min., Iон = –1mA	2.4		V
Icc	Dynamic Operating Current	Vcc = Max., $\overline{CS} \le VIL$; f = fMAX, Outputs Open	_	480	mA
lsв	Standby Supply Current (TTL Levels)	$\overline{CS} \ge VIH$, VCC = Max., f = fMAX, Outputs Open	_	250	mA
ISB1	Full Standby Supply Current (CMOS Levels)	$\overline{CS} \ge Vcc - 0.2V, VIN \ge Vcc - 0.2V$ or ≤ 0.2	_	170	mA


2675 tbl 07

2

Vcc

 $5V \pm 10\%$ 2675 tbl 06

AC TEST CONDITIONS

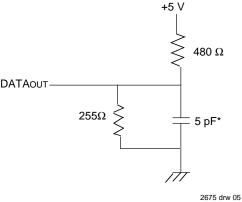
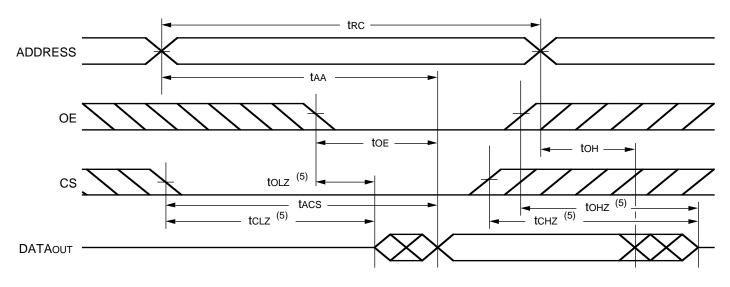


Figure 2. Output Load (for toLz, tcHz, toHz, twHz, tow and tcLz)

AC ELECTRICAL CHARACTERISTICS

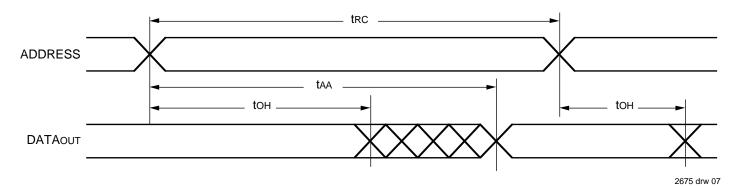
 $(VCC = 5V \pm 10\%, TA = 0^{\circ}C \text{ to } +70^{\circ}C)$

		7MB4048						
		-25 -30			-35			
Symbol		Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle								
tRC	Read Cycle Time	25		30		35	—	ns
taa	Address Access Time	—	25	—	30	—	35	ns
tACS	Chip Select Access Time	—	25	_	30	_	35	ns
tOE	Output Enable to Output Valid	—	12	—	15	_	15	ns
tonz ⁽¹⁾	Output Disable to Output in High-Z	—	12	—	12	—	15	ns
tolz ⁽¹⁾	Output Enable to Output in Low-Z	0	—	0	—	0	_	ns
tcLz ⁽¹⁾	Chip Select to Output in Low-Z	5	—	5	—	5	_	ns
tCHZ ⁽¹⁾	Chip Deselect to Output in High-Z	—	14		16		20	ns
toн	Output Hold from Address Change	3	—	3	—	3	_	ns
tpu ⁽¹⁾	Chip Select to Power-Up Time	0	—	0	—	0	_	ns
tPD ⁽¹⁾	Chip Deselect to Power-Down Time	—	25	—	30	_	35	ns
Write C	ycle			_				
twc	Write Cycle Time	25	—	30	—	35	—	ns
tWP	Write Pulse Width	17	_	20		25	_	ns
tAS ⁽²⁾	Address Set-up Time	3	—	0		0	—	ns
tAW	Address Valid to End-of-Write	20	_	25	_	30	_	ns
tcw	Chip Select to End-of-Write	20	_	25		30	_	ns
tDW	Data to Write Time Overlap	15	—	17		20	_	ns
tDH ⁽²⁾	Data Hold Time	0	_	0	_	0	_	ns
twr ⁽²⁾	Write Recovery Time	0	_	0		0	_	ns
twnz ⁽¹⁾	Write Enable to Output in High-Z	_	15	_	15	_	15	ns
tow ⁽¹⁾	Output Active from End-of-Write	2	_	5	—	5	_	ns

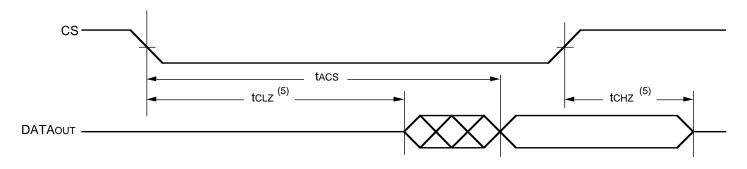

NOTES

1. This parameter is guaranteed by design, but not tested.

2. tAS=0ns for \overline{CS} controlled write cycles. tDH, tWR= 3ns for \overline{CS} controlled write cycles.


2675 tbl 10

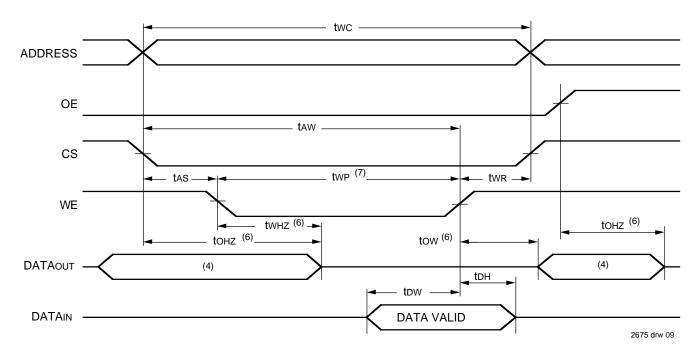
TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾



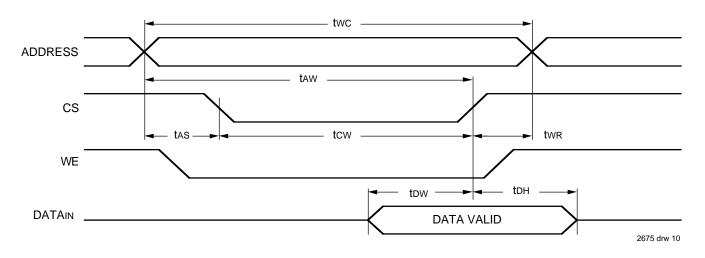
2675 drw 06

TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 2, 4)

TIMING WAVEFORM OF READ CYCLE NO. 3^(1, 3, 4)

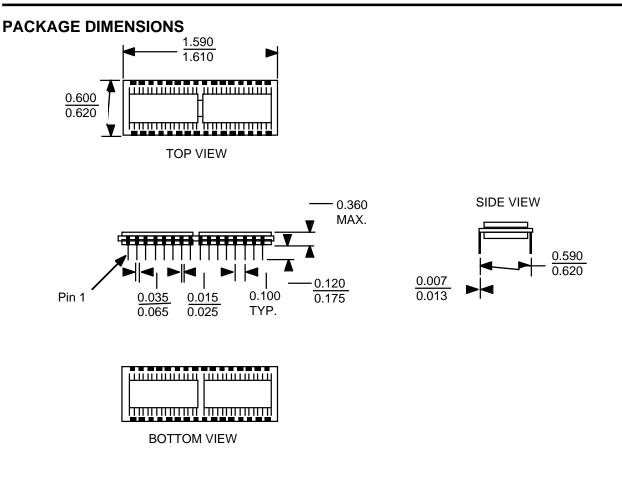


2675 drw 08

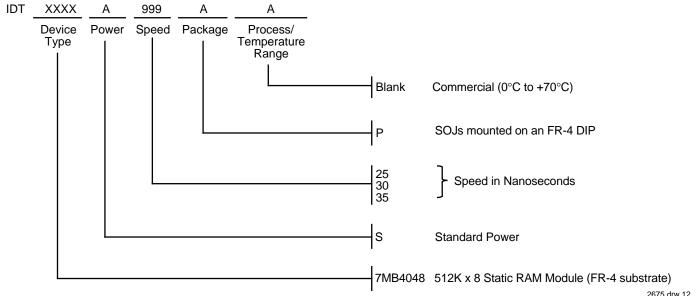

NOTES:

- 1. $\overline{\text{WE}}$ is HIGH for Read Cycle.
- 2. Device is continuously selected, $\overline{CS} = VIL$.
- 3. Address valid prior to or coincident with \overline{CS} transition LOW.
- 4. $\overline{OE} = VIL$.
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state. This parameter is guaranteed by design, but not tested.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1, 2, 3, 7)



TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)^(1, 2, 3, 5)


NOTES:

- 1. $\overline{\text{WE}}$ or $\overline{\text{CS}}$ must be HIGH during all address transitions.
- 2. A write occurs during the overlap (twp) of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 3. two is measured from the earlier of \overrightarrow{CS} or \overrightarrow{WE} going HIGH to the end of write cycle.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 6. Transition is measured ±200mV from steady state with a 5pF load (including scope and jig). This parameter is guaranteed by design, but not tested.
- 7. If OE is LOW during a WE controlled write cycle, the write pulse width must be the larger of twp or (twHZ + tbw) to allow the I/O drivers to turn off and data to be placed on the bus for the required tbw. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.

2675 drw 11

ORDERING INFORMATION⁽¹⁾

