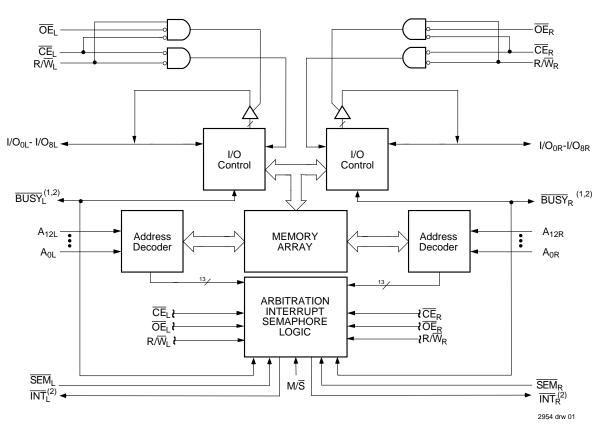


HIGH-SPEED 8K x 9 DUAL-PORT STATIC RAM

FEATURES:


- True Dual-Ported memory cells which allow simultaneous access of the same memory location
- High-speed access
 - Military: 20/25/35ns (max.)
 - Commercial: 12/15/17/20/25/35ns (max.)
- Low-power operation
 IDT7015S
 Active: 750mW (typ.)
 Standby: 5mW (typ.)
 IDT7015L
 - Active: 750mW (typ.) Standby: 1mW (typ.)
- IDT7015 easily expands data bus width to 18 bits or more using the Master/Slave select when cascading more than one device
- M/S = H for BUSY output flag on Master M/S = L for BUSY input on Slave

FUNCTIONAL BLOCK DIAGRAM

- Interrupt and Busy Flags
- On-chip port arbitration logic
- Full on-chip hardware support of semaphore signaling between ports
- · Fully asynchronous operation from either port
- Devices are capable of withstanding greater than 2001V electrostatic discharge
- TTL-compatible, single 5V (±10%) power supply
- Available in ceramic 68-pin PGA, 68-pin PLCC, and an 80-pin TQFP
- Industrial temperature range (-40°C to +85°C) is available, tested to military electrical specifications

DESCRIPTION:

The IDT7015 is a high-speed 8K x 9 Dual-Port Static RAMs. The IDT7015 is designed to be used as stand-alone Dual-Port RAM or as a combination MASTER/SLAVE Dual-Port RAM for 18-bit-or-more word systems. Using the IDT

NOTES:

- 1. In MASTER mode: BUSY is an output and is a push-pull driver
- In SLAVE mode: BUSY is input.
- 2. $\overline{\text{BUSY}}$ outputs and $\overline{\text{INT}}$ outputs are non-tri-stated push-pull drivers.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

OCTOBER 1996

©1996 Integrated Device Technology, Inc. For latest information contact IDT's web site at www.idt.com or fax-on-demand at 408-492-8391.

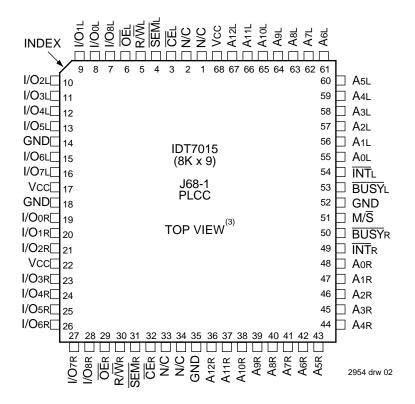
6.12

Fabricated using IDT's CMOS high-performance technol-

The IDT7015 is packaged in a ceramic 68-pin PGA, a 64pin PLCC and an 80-pin TQFP (Thin Quad FlatPack). Military

ogy, these devices typically operate on only 750mW of power.

grade product is manufactured in compliance with the latest


revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level

of performance and reliability.

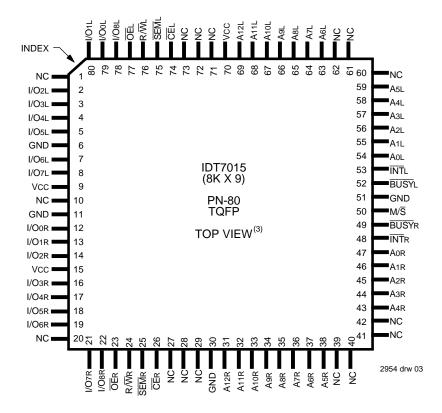
MASTER/SLAVE Dual-Port RAM approach in 18-bit or wider memory system applications results in full-speed, error-free operation without the need for additional discrete logic.

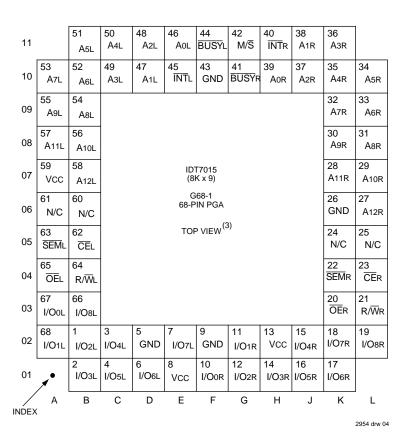
This device provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. An automatic power down feature controlled by \overline{CE} permits the on-chip circuitry of each port to enter a very low standby power mode.

PIN CONFIGURATIONS (1,2)

NOTES:

1. All Vcc pins must be connected to power supply.


2. All GND pins must be connected to ground supply.


3. This text does not imply orientation of Part-Mark.

PIN NAMES		
Left Port	Right Port	Names
CEL	CER	Chip Enable
R/WL	R/WR	Read/Write Enable
ŌĒL	ŌĒR	Output Enable
A0L – A12L	A0R – A12R	Address
I/O0L – I/O8L	I/O0R – I/O8R	Data Input/Output
SEML	SEMR	Semaphore Enable
ĪNTL	ĪNTR	Interrupt Flag
BUSYL	BUSYR	Busy Flag
ſ	M/S	Master or Slave Select
١	/cc	Power
G	SND	Ground
		2954 tbl 01

PIN NAMES

PIN CONFIGURATIONS (CON'T.) (1,2)

NOTES:

1. All Vcc must be connected to power supply.

2. All GND must be connected to ground supply.

TRUTH TABLE: NON-CONTENTION READ/WRITE CONTROL

	Inp	uts ⁽¹⁾		Outputs				
CE	R/W	Œ	SEM	I/O0-8	Mode			
Н	Х	Х	Н	High-Z	Deselected: Power-Down			
L	L	Х	Н	DATAIN	Write to Memory			
L	Н	L	Н	DATAOUT	Read Memory			
Х	Х	Н	Х	High-Z	Outputs Disabled			

NOTE:

1. Condition: AoL — A12L is not equal to AoR — A12R.

TRUTH TABLE: SEMAPHORE READ/WRITE CONTROL⁽¹⁾

	Inp	uts		Outputs				
CE	R/W	ŌĒ	SEM	I/O0-8	Mode			
Н	Н	L	L	DATAOUT	Read Semaphore Flag Data Out (I/O0-8)			
н	ſ	Х	L	DATAIN	Write I/Oo into Semaphore Flag			
L	Х	Х	L	_	Not Allowed			

NOTE:

1. There are eight semaphore flags written to via I/Oo and read from I/Oo-8. These eight semaphores are addressed by Ao - A2.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Commercial	Military	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
ΤΑ	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	–55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	–65 to +150	°C
Ιουτ	DC Output Current	50	50	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

 VTERM must not exceed Vcc + 0.5V for more than 25% of the cycle time or 10ns maximum, and is limited to ≤ 20mA for the period of VTERM ≥ Vcc + 0.5V.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Ambient Temperature	GND	Vcc
Military	–55°C to +125°C	0V	$5.0V\pm10\%$
Commercial	0°C to +70°C	0V	$5.0V \pm 10\%$

2954 tbl 05

2954 tbl 06

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
Vін	Input High Voltage	2.2		6.0 ⁽²⁾	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V

NOTES:

2954 tbl 04

1. $V_{IL \ge}$ -1.5V for pulse width less than 10ns.

2. VTERM must not exceed Vcc + 0.5V.

$(TA = +25^{\circ}C, f = 1.0MHz) TQFP ONLY$

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	9	pF
Соит	Output Capacitance	Vout = 3dV	10	pF

NOTES:

1. This parameter is determined by device characteristics but is not production tested.

2. 3dV references the interpolated capacitance when the input and output signals switch from 0V to 3V or from 3V to 0V.

2954 tbl 07

2954 tbl 03

DC ELECTRICAL CHARACTERISTICS OVER THE **OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE** (Vcc = 5.0V ± 10%)

			7015S		701		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
LI	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, VIN = 0V to Vcc	_	10	_	5	μΑ
Ilo	Output Leakage Current	\overline{CE} = VIH, VOUT = 0V to VCC	_	10	—	5	μA
Vol	Output Low Voltage	IOL = 4mA	—	0.4	—	0.4	V
Voн	Output High Voltage	Іон = -4mA	2.4	_	2.4	—	V

NOTE:

1. At Vcc \leq 2.0V, Input leakages are undefined.

2954 tbl 08

DC ELECTRICAL CHARACTERISTICS OVER THE **OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE⁽¹⁾** (Vcc = 5.0V ± 10%)

Symbol	Parameter	Test Condition	Versio	n	7015) Com'l. Typ. ⁽²⁾	Only	7013 Com'l. Typ. ⁽²⁾		Com'	5X17 . Only ²⁾ Max.	Unit
Icc	Dynamic Operating Current	CE = VIL, Outputs Open SEM = VIH	MIL.	S L	— — —				-		mA
	(Both Ports Active)	$f = fMAX^{(3)}$	COM'L.	S L	170 170	325 275	170 170	310 260	170 170	310 260	
ISB1	Standby Current (Both Ports — TTL	$\frac{\overline{CE}R = \overline{CE}L = VIH}{\overline{SEM}R = \overline{SEM}L = VIH}$	MIL.	S L	_ _	_	—			_	mA
	Level Inputs)	$f = fMAX^{(3)}$	COM'L.	S L	25 25	70 60	25 25	60 50	25 25	60 50]
ISB2	Standby Current (One Port — TTL	\overline{CE} "A"=VIL and \overline{CE} "B" = VIH ⁽⁵⁾ Active Port Outputs Open	MIL.	S L	_	_	_			_	mA
	Level Inputs)	$\frac{f = f_{MAX}^{(3)}}{\overline{SEM}_{R} = \overline{SEM}_{L} = V_{IH}$	COM'L.	S L	105 105	200 170	105 105	190 160	105 109	190 160	
ISB3	Full Standby Current (Both Ports — All	Both Ports CEL and CER ≥ Vcc - 0.2V	MIL.	S L	_	_	_			_	mA
	CMOS Level Inputs)	$ \begin{array}{l} \mbox{VIN} \geq \mbox{Vcc} & - \ 0.2 \mbox{V or} \\ \mbox{VIN} \leq \ 0.2 \mbox{V}, \ f = \ 0^{(4)} \\ \mbox{\overline{SEMR}} = \ \mbox{\overline{SEML}} \geq \ \mbox{Vcc} & - \ 0.2 \mbox{V} \end{array} $	COM'L.	S L	1.0 0.2	15 5	1.0 0.2	15 5	1.0 0.2	15 5	
ISB4	Full Standby Current (One Port — All	$\frac{\overline{CE}}{\overline{CE}} A^* \leq 0.2V \text{ and}$	MIL.	S L	_	_	_		_	_	mA
	CMOS Level Inputs)	$\label{eq:semiclosed} \begin{split} \overline{SEM}{\sf R} &= \overline{SEM}{\sf L} \geq V{\sf CC} - 0.2V \\ V{\sf IN} \geq V{\sf CC} - 0.2V \text{ or} \\ V{\sf IN} \leq 0.2V \\ Active Port Outputs Open, \\ f &= f{\sf MAX}^{(3)} \end{split}$	COM'L.	S L	100 100	180 150	100 100	170 140	100 100	170 140	mA

NOTES: 1. "X" in part numbers indicates power rating (S or L).

2. Vcc = 5V, TA = +25°C, and are not production tested. Icccc = 120mA(typ.)

3. At f = fMAX, address and I/O's are cycling at the maximum frequency read cycle of 1/tRc, and using "AC Test Conditions" of input levels of GND to 3V.

4. f = 0 means no address or control lines change.

5. Port "A" may be either left or right port. Port "B" is the opposite of port "A".

DC ELECTRICAL CHARACTERISTICS OVER THE **OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE⁽¹⁾(Cont'd)** (Vcc = 5.0V ± 10%)

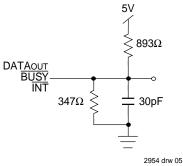
	Tast			7015X20		7015	5X25	7015X35		
Parameter	Condition	Versio	n	Typ. ⁽²⁾	Max.	Тур. ⁽²⁾	Max.	Typ. ⁽²⁾	Max.	Unit
Dynamic Operating Current	$\frac{\overline{CE}}{\overline{SEM}} = VIL, Outputs Open$ $\overline{SEM} = VIH$	MIL.	S L	_	_	155 155	340 280	150 150	300 250	mA
(Both Ports Active)	$f = fMAX^{(3)}$	COM'L.	S L	160 160	290 240	155 155	265 220	150 150	250 210	
Standby Current (Both Ports — TTL	$\overline{\underline{CEL}} = \overline{\underline{CER}} = VIH$ $\overline{\underline{SEMR}} = \overline{\underline{SEML}} = VIH$	MIL.	S L	_	_	16 16	80 65	13 13	80 65	mA
Level Inputs)	$f = fMAX^{(3)}$	COM'L.	S L	20 20	60 50	16 16	60 50	13 13	60 50	
Standby Current	\overline{CE} "A"=VIL and \overline{CE} "B"=VIH ⁽⁵⁾	MIL.	S	_		90	215	85	190	mA
(One Port — TTL	Active Port Outputs Open		L	—	—	90	180	85	160	
Level Inputs)	$f = fMAX^{(3)}$	COM'L.	S	95	180	90	170	85	155	1
	$\overline{\text{SEM}}R = \overline{\text{SEM}}L = VIH$		L	95	150	90	140	85	130	
Full Standby Current (Both Ports — All	Both Ports CEL and CER ≥ Vcc - 0.2V	MIL.	S L	_		1.0 0.2	30 10	1.0 0.2	30 10	mA
CMOS Level Inputs)	$VIN \ge VCC - 0.2V \text{ or}$ $VIN \le 0.2V, f = 0^{(4)}$ $\overline{SEMR} = \overline{SEML} \ge VCC - 0.2V$	COM'L.	S L	1.0 0.2	15 5	1.0 0.2	15 5	1.0 0.2	15 5	
Full Standby Current (One Port — All CMOS Level Inputs)	$\frac{\overline{CE}}{\overline{CE}} = 0.2V \text{ and}$ $\frac{\overline{CE}}{\overline{E}} = VCC - 0.2V^{(5)}$ $\overline{SEMR} = \overline{SEMR} = VCC - 0.2V$	MIL.	S L	_	_	85 85	200 170	80 80	175 150	mA
			S	90	155	85	145	80	135	1
	$VIN \leq 0.2V$ Active Port Outputs Open, $f = fMAX^{(3)}$	001112.	L	90	130	85	120	80	110	
	Dynamic Operating Current (Both Ports Active) Standby Current (Both Ports — TTL Level Inputs) Standby Current (One Port — TTL Level Inputs) Full Standby Current (Both Ports — All CMOS Level Inputs) Full Standby Current	Dynamic Operating Current $\overline{CE} = VIL, Outputs Open$ $\overline{SEM} = VIH$ $f = fMAX^{(3)}$ Standby Current (Both Ports — TTL Level Inputs) $\overline{CE}L = \overline{CER} = VIH$ $\overline{SEMR} = \overline{SEML} = VIH$ $f = fMAX^{(3)}$ Standby Current (One Port — TTL Level Inputs) $\overline{CE}^*A^*=VIL and \overline{CE}^*B^*=VIH^{(5)}$ Active Port Outputs Open $f = fMAX^{(3)}$ Standby Current (One Port — TTL Level Inputs) $\overline{CE}^*A^*=VIL and \overline{CE}^*B^*=VIH^{(5)}$ Active Port Outputs Open $f = fMAX^{(3)}$ Full Standby Current (Both Ports — All CMOS Level Inputs)Both Ports \overline{CEL} and $\overline{CER} \ge VCC - 0.2V$ $VIN \ge VCC - 0.2V$ or $VIN \le 0.2V, f = 0^{(4)}$ $\overline{SEMR} = \overline{SEML} \ge VCC - 0.2V$ Full Standby Current (One Port — All CMOS Level Inputs) $\overline{CE}^*A^* \le 0.2V$ and $\overline{CE}^*B^* \ge VCC - 0.2V$ Full Standby Current (One Port — All CMOS Level Inputs) $\overline{CE}^*A^* \le 0.2V$ and $\overline{CE}^*B^* \ge VCC - 0.2V$ Full Standby Current (One Port — All CMOS Level Inputs) $\overline{CE}^*B^* \ge VCC - 0.2V$ or $VIN \ge 0.2V$ $Active Port Outputs Open,$	ParameterConditionVersionDynamic Operating Current $\overline{CE} = VIL, Outputs Open$ $\overline{SEM} = VIH$ f = fMAX ⁽³⁾ MIL.(Both Ports Active) $f = fMAX^{(3)}$ COM'L.Standby Current (Both Ports — TTL $\overline{CEL} = \overline{CER} = VIH$ $\overline{SEMR} = \overline{SEML} = VIH$ f = fMAX ⁽³⁾ MIL.Level Inputs) $\overline{CE}^*A^* = VIL$ and $\overline{CE}^*B^* = VIH^{(5)}$ $F = fMAX^{(3)}$ MIL.Standby Current (One Port — TTL Level Inputs) $\overline{CE}^*A^* = VIL$ and $\overline{CE}^*B^* = VIH^{(5)}$ $\overline{SEMR} = \overline{SEML} = VIH$ MIL.Full Standby Current (Both Ports — All CMOS Level Inputs)Both Ports \overline{CEL} and $\overline{CER} \ge Vcc - 0.2V$ $VIN \ge Vcc - 0.2V$ MIL.Full Standby Current (One Port — All CMOS Level Inputs) $\overline{CE}^*A^* \le 0.2V$ and $\overline{CE}^*B^* \ge Vcc - 0.2V^{(5)}$ $\overline{SEMR} = \overline{SEML} \ge Vcc - 0.2V$ MIL.Full Standby Current (One Port — All CMOS Level Inputs) $\overline{CE}^*A^* \le 0.2V$ and $\overline{CE}^*B^* \ge Vcc - 0.2V^{(5)}$ $\overline{SEMR} = \overline{SEML} \ge Vcc - 0.2V$ $VIN \ge Vcc - 0.2V$ or $VIN \ge Vcc - 0.2V$ or $VIN \ge Vcc - 0.2V$ MIL.	ParameterConditionVersionDynamic Operating Current $\overline{CE} = VIL, Outputs Open$ $\overline{SEM} = VIH$ MIL.S(Both Ports Active) $f = fMAX^{(3)}$ COM'L.SStandby Current (Both Ports — TTL $\overline{CEL} = \overline{CER} = VIH$ $\overline{SEMR} = \overline{SEML} = VIH$ $f = fMAX^{(3)}$ MIL.SStandby Current (Don Port — TTL $\overline{CE}^{*}a^{*}=VIL$ and $\overline{CE}^{*}B^{*}=VIH^{(5)}$ $\overline{CC}^{*}a^{*}=VIL$ MIL.SStandby Current (One Port — TTL $\overline{CE}^{*}a^{*}=VIL$ and $\overline{CE}^{*}B^{*}=VIH^{(5)}$ $\overline{SEMR} = \overline{SEML} = VIH$ MIL.SCOM'L.S $\overline{SEMR} = \overline{SEML} = VIH$ LLevel Inputs) $f = fMAX^{(3)}$ $\overline{SEMR} = \overline{SEML} = VIH$ LFull Standby Current (Both Ports — All CMOS Level Inputs)Both Ports \overline{CEL} and $\overline{CE}^{*}A^{*} \subseteq 0.2V$ or $VIN \ge VCC - 0.2V$ MIL.SFull Standby Current (One Port — All CMOS Level Inputs) $\overline{CE}^{*}A^{*} \subseteq 0.2V$ and $\overline{CE}^{*}B^{*} \ge VCC - 0.2V$ MIL.SFull Standby Current (One Port — All CMOS Level Inputs) $\overline{CE}^{*}A^{*} \subseteq 0.2V$ and $\overline{CE}^{*}B^{*} \ge VCC - 0.2V$ MIL.SFull Standby Current (One Port — All CMOS Level Inputs) $\overline{CE}^{*}A^{*} \subseteq 0.2V$ and $\overline{CE}^{*}B^{*} \ge VCC - 0.2V$ or $VIN \ge 0.2V$ $Active Port Outputs Open,MIL.S$	ParameterTest ConditionVersionTyp.(2)Dynamic Operating Current $\overline{CE} = VIL$, Outputs Open SEM = VIH f = fMAX(3)MIL.S(Both Ports Active) $f = fMAX^{(3)}$ $COM'L.$ S160 160Standby Current (Both Ports - TTL) $\overline{CEL} = \overline{CER} = VIH$ SEMR = SEML = VIH f = fMAX(3)MIL.SLevel Inputs) $\overline{CE}^{+}a^{-}VIL$ and $\overline{CE}^{+}b^{-}VIH^{(5)}$ MIL.S20 20Standby Current (One Port - TTL) $\overline{CE}^{+}a^{-}VIL$ and $\overline{CE}^{+}b^{-}VIH^{(5)}$ MIL.S(One Port - TTL Level Inputs) $\overline{CE}^{+}a^{-}VIL$ and $\overline{CE}^{-}b^{-}VIH^{(5)}$ MIL.S(One Port - TTL (Den Port - TTL)Active Port Outputs Open $\overline{EEMR} = \overline{SEML} = VIH$ L9595Full Standby Current (Both Ports - AllBoth Ports \overline{CE} and $\overline{CER} \ge Vcc - 0.2V$ or $VIN \le 0.2V, f = 0^{(4)}$ $\overline{SEMR} = \overline{SEML} \ge Vcc - 0.2V$ MIL.S1.0 0.2 Full Standby Current (One Port - All $\overline{CE}^{+}a^{+}g_{-}O_{-}O_{-}O_{-}O_{-}O_{-}O_{-}O_{-}O$	ParameterTest ConditionVersionTyp.(2)Max.Dynamic Operating Current $\overline{CE} = VIL$, Outputs Open SEM = VIHMIL.S(Both Ports Active) $f = f_{MAX}^{(3)}$ $COM'L.$ S160290(Both Ports Active) $f = f_{MAX}^{(3)}$ $COM'L.$ S160240Standby Current (Both Ports - TTL $\overline{CEL} = \overline{CER} = VIH$ SEMR = SEML = VIHMIL.SLevel Inputs) $f = f_{MAX}^{(3)}$ $COM'L.$ S2060Standby Current (One Port - TTL $\overline{CE'a^*} = VIL$ and $\overline{CE'}^* = VIH^{(5)}$ MIL.S2060Level Inputs) $f = f_{MAX}^{(3)}$ $COM'L.$ S95180Standby Current (One Port - TTLActive Port Outputs Open $\overline{EMR} = SEML = VIH$ L95150Full Standby Current (Both Ports - AllBoth Ports \overline{CE} and $\overline{CER} \ge VCC - 0.2V$ or $VIN \le 0.2V, f = 0^{(4)}$ $\overline{SEMR} = SEML \ge VCC - 0.2V$ MIL.S1.015Full Standby Current (One Port - All $CMOS$ Level Inputs) $\overline{CE'}^*a^* \le 0.2V$ and $\overline{CE'}^*a^* \le 0.2V$ and \overline{CMOS} Level Inputs) $\overline{CE'}^*a^* \le 0.2V$ and $\overline{CE'}^*a^* \le 0.2V$ or $VIN \le 0.2V, f = 0^{(4)}$ $\overline{SEMR} = SEML \ge VCC - 0.2V$ $VIN = 0.2V$ L $OI'L.$ S90155Full Standby Current (One Port - All $CMOS$ Level Inputs) $\overline{CE'}^*a^* \le 0.2V$ and $\overline{CE'}^*a^* \le 0.2V$ or $VIN \ge 0.2V$ $III.$ S90150VIN $\ge 0.2V$ $VIN \ge 0.2VIII.S90130$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

"X" in part numbers indicates power rating (S or L). 1.

Vcc = 5V, $TA = +25^{\circ}C$, and are not production tested. Icccc = 120mA(typ.)2.

At $f = f_{MAX}$, address and I/O's are cycling at the maximum frequency read cycle of 1/ tRc, and using "AC Test Conditions" of input levels of GND to 3V. З.

4. f = 0 means no address or control lines change.


5. Port "A" may be either left or right port. Port "B" is the opposite of port "A".

OUTPUT LOADS AND AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times ⁽¹⁾	5ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figure 1 and 2

NOTE:

1. 3ns Max. for tAA=12ns

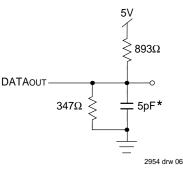


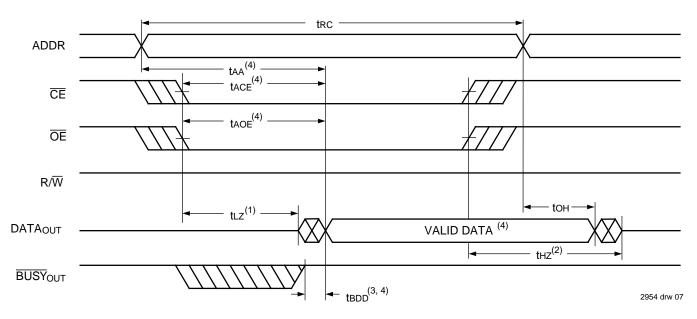
Figure 2. Output Test Load (For tLz, tHz, twz, tow) Including scope and jig.

AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE⁽⁴⁾

		IDT7015X12 Com'l. Only		IDT7015X15 Com'l. Only		IDT7015X17 Com'l. Only		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CY	CLE							
tRC	Read Cycle Time	12	—	15	—	17	_	ns
taa	Address Access Time	—	12	_	15	_	17	ns
tACE	Chip Enable Access Time ⁽³⁾	—	12	—	15	—	17	ns
taoe	Output Enable Access Time	—	8	—	10	_	10	ns
toн	Output Hold from Address Change	3	—	3	—	3		ns
t∟z	Output Low-Z Time ^(1, 2)	3	—	3		3	_	ns
tHZ	Output High-Z Time ^(1, 2)	—	10	—	10	—	10	ns
tPU	Chip Enable to Power Up Time ⁽²⁾	0	_	0	_	0	_	ns
tPD	Chip Disable to Power Down Time ⁽²⁾	_	12	—	15	—	17	ns
tSOP	Semaphore Flag Update Pulse (OE or SEM)	10	—	10		10	_	ns
tsaa	Semaphore Address Access Time		12	_	15	_	17	ns

		IDT70	15X20	IDT7015X25		IDT7015X35			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
READ CY	CLE	•	•	•					
tRC	Read Cycle Time	20	_	25		35	—	ns	
taa	Address Access Time	—	20	—	25	—	35	ns	
tACE	Chip Enable Access Time ⁽³⁾	—	20	—	25	—	35	ns	
taoe	Output Enable Access Time	—	12	—	13	—	20	ns	
tон	Output Hold from Address Change	3	—	3		3	—	ns	
t∟z	Output Low-Z Time ^(1, 2)	3	—	3	_	3	—	ns	
tHZ	Output High-Z Time ^(1, 2)	—	12	_	15	—	20	ns	
tPU	Chip Enable to Power Up Time ⁽²⁾	0	_	0		0	_	ns	
tPD	Chip Disable to Power Down Time ⁽²⁾	—	20	_	25	—	35	ns	
tSOP	Semaphore Flag Update Pulse (OE or SEM)	10	I —	10	—	15	I —	ns	
tsaa	Semaphore Address Access Time	—	20	—	25	—	35	ns	

NOTES:

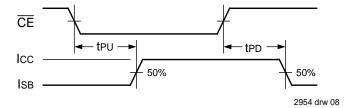

1. Transition is measured ±200mV from Low- or High-impedance voltage with the Output test load (Figure 2).

2. This parameter is guaranteed by device characterization but not tested.

3. To access RAM, $\overrightarrow{CE} = V_{IL}$ and $\overleftarrow{SEM} = V_{IH}$. To access semaphore, $\overrightarrow{CE} = V_{IH}$ and $\overrightarrow{SEM} = V_{IL}$.

4. "X" in part numbers indicates power rating (S or L).

WAVEFORM OF READ CYCLES⁽⁵⁾



NOTES:

- 1. Timing depends on which signal is asserted last, $\overline{\text{OE}}$ or $\overline{\text{CE}}$.
- 2. Timing depends on which signal is de-asserted first, \overline{CE} or \overline{OE} .
- 3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no relation to valid output data.
- 4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.

5. $\overline{\text{SEM}} = \text{VIH}.$

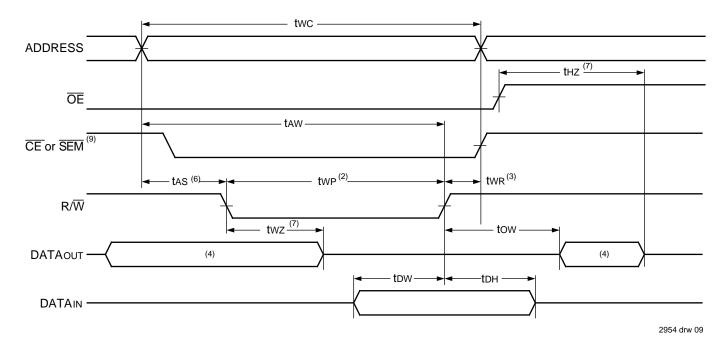
TIMING OF POWER-UP / POWER-DOWN

AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE⁽⁵⁾

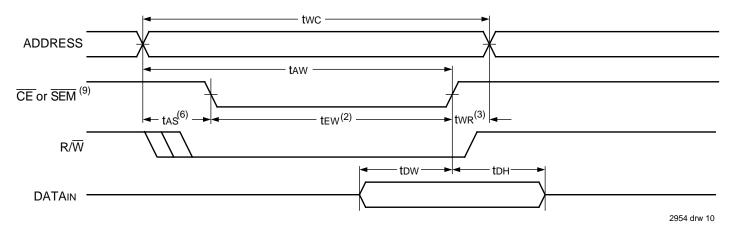
		IDT70 Com'		015X15 I. Only	IDT7015X17 Com'l. Only			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE C	YCLE			_				
twc	Write Cycle Time	12	—	15	—	17	—	ns
tew	Chip Enable to End-of-Write ⁽³⁾	10	—	12		12	—	ns
tAW	Address Valid to End-of-Write	10	—	12		12	—	ns
tAS	Address Set-up Time ⁽³⁾	0	—	0	—	0	—	ns
twp	Write Pulse Width	10	—	12		12	—	ns
twr	Write Recovery Time	2	—	2	—	2	—	ns
tDW	Data Valid to End-of-Write	10	—	10	_	10	—	ns
tHZ	Output High-Z Time ^(1, 2)	_	10	_	10	_	10	ns
tDH	Data Hold Time ⁽⁴⁾	0	—	0		0	_	ns
twz	Write Enable to Output in High-Z ^(1, 2)	_	10	_	10	_	10	ns
tow	Output Active from End-of-Write ^(1, 2, 4)	3	—	3		0	—	ns
tSWRD	SEM Flag Write to Read Time	5	—	5	_	5	—	ns
tSPS	SEM Flag Contention Window	5	-	5	—	5	-	ns
		IDT701	15X20	IDT70	15X25	IDT701	15X35	
Symbol	Parameter	IDT701 Min.	15X20 Max.	IDT70 Min.	15X25 Max.	IDT701 Min.	15X35	Unit
Symbol WRITE C							-	Unit
							-	Unit
WRITE C	YCLE	Min.		Min.		Min.	-	1
WRITE CY	YCLE Write Cycle Time	Min. 20	Max.	Min. 25		Min. 35	-	ns
WRITE CY twc tEW	YCLE Write Cycle Time Chip Enable to End-of-Write ⁽³⁾	Min. 20 15	Max.	Min. 25 20		Min. 35 30	-	ns ns
WRITE CY twc tEW tAW	YCLE Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write	Min. 20 15 15	Max. — —	Min. 25 20 20	Max. 	Min. 35 30 30	Max.	ns ns ns
WRITE C twc tEW tAW tAS	YCLE Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time ⁽³⁾	Min. 20 15 0	Max.	Min. 25 20 20 0	Max. — — —	Min. 35 30 30 0	Max.	ns ns ns ns
WRITE C ^V twc tEW tAW tAS twp	YCLE Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time ⁽³⁾ Write Pulse Width	Min. 20 15 15 0 15	Max.	Min. 25 20 20 20 20 20	Max. — — —	Min. 35 30 30 0 25	Max.	ns ns ns ns ns
WRITE C twc tEW tAW tAS twP twR	YCLE Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time ⁽³⁾ Write Pulse Width Write Recovery Time	Min. 20 15 15 0 15 2	Max.	Min. 25 20 20 20 20 20 20 20 20 20 20 20 20 20	Max. — — —	Min. 35 30 30 0 25 2	Max.	ns ns ns ns ns ns ns
WRITE C twc tEW tAW tAS twP tWR tDW	YCLE Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time ⁽³⁾ Write Pulse Width Write Recovery Time Data Valid to End-of-Write	Min. 20 15 15 0 15 2	Max.	Min. 25 20 20 20 20 20 20 20 20 20 20 20 20 20	Max.	Min. 35 30 30 0 25 2	Max.	ns ns ns ns ns ns ns ns
WRITE C twc tEW tAW tAS tWP tWR tWR tDW tHZ	YCLE Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time ⁽³⁾ Write Pulse Width Write Recovery Time Data Valid to End-of-Write Output High-Z Time ^(1, 2)	Min. 20 15 15 0 15 2 15 0 15 2 15 2 15	Max	Min. 25 20 20 0 20 20 20 20 20 15 —	Max. — — — — — — — — 15	Min. 35 30 30 0 25 2 15 	Max.	ns ns ns ns ns ns ns ns
WRITE C twc tEW tAW tAS tWP tWR tDW tHZ tDH	YCLE Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time ⁽³⁾ Write Pulse Width Write Recovery Time Data Valid to End-of-Write Output High-Z Time ^(1, 2) Data Hold Time ⁽⁴⁾	Min. 20 15 15 0 15 2 15 0 15 0 15 0 15 0 0 0 0 0	Max.	Min. 25 20 20 0 20 20 2 15 0	Max. — — — — — — — 15 —	Min. 35 30 30 0 25 2 15 	Max.	ns ns ns ns ns ns ns ns ns ns
WRITE C twc tEW tAW tAS twP twR tDW tHZ tDH twZ	YCLE Write Cycle Time Chip Enable to End-of-Write ⁽³⁾ Address Valid to End-of-Write Address Set-up Time ⁽³⁾ Write Pulse Width Write Recovery Time Data Valid to End-of-Write Output High-Z Time ^(1, 2) Data Hold Time ⁽⁴⁾ Write Enable to Output in High-Z ^(1, 2)	Min. 20 15 15 0 15 2 15 2 15 - 0 0 0 - 0 -	Max.	Min. 25 20 20 20 20 20 20 2 15 0 	Max. — — — — — — — 15 —	Min. 35 30 30 0 25 2 15 - 0 - 0	Max.	ns ns ns ns ns ns ns ns ns ns

NOTES:

1. Transition is measured ±200mV from Low or High-impedance voltage with the Output test load (Figure 2).

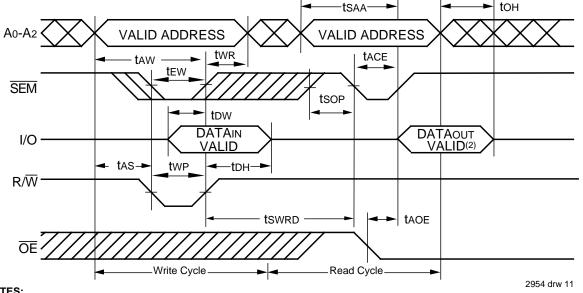

2. This parameter is guaranteed by device characterization but not tested.

3. To access RAM, $\overrightarrow{CE} = V_{IL}$ and $\overrightarrow{SEM} = V_{IH}$. To access semaphore, $\overrightarrow{CE} = V_{IH}$ and $\overrightarrow{SEM} = V_{IL}$. Either condition must be valid for the entire tew time. 4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tow values will vary


over voltage and temperature, the actual tDH will always be smaller than the actual tow.

5. "X" in part numbers indicates power rating (S or L).

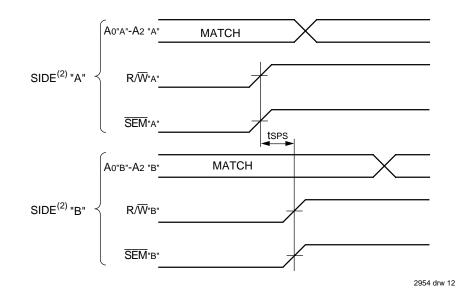
TIMING WAVEFORM OF WRITE CYCLE NO. 1, R/W CONTROLLED TIMING^(1,5,8)


TIMING WAVEFORM OF WRITE CYCLE NO. 2, CE CONTROLLED TIMING^(1,5)

NOTES:

- 1. R/\overline{W} or \overline{CE} must be High during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a Low CE and a Low R/W for memory array writing cycle.
- 3. twR is measured from the earlier of CE or R/W (or SEM or R/W) going High to the end of write cycle.
- 4. During this period, the I/O pins are in the output state and input signals must not be applied.
- 5. If the CE or SEM Low transition occurs simultaneously with or after the R/W Low transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal is asserted last, \overline{CE} or R/W.
- 7. This parameter is guaranteed by device characterization but is not production tested, transition is measured +/-200mV from steady state with the Output Test load (Figure 2).
- 8. If \overline{OE} is Low during R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tbw) to allow the I/O drivers to turn off and data to be placed on the bus for the required tbw. If \overline{OE} is High during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.

9. To access RAM, \overline{CE} = VIL and \overline{SEM} = VIH. To access Semaphore, \overline{CE} = VIH and \overline{SEM} = VIL. tew must be met for either condition.


TIMING WAVEFORM OF SEMAPHORE READ AFTER WRITE TIMING, EITHER SIDE⁽¹⁾

NOTES:

1. \overline{CE} = VIH for the duration of the above timing (both write and read cycle).

2. "DATAOUT VALID" represents all I/O's (I/Oo-I/O8) equal to the semaphore value.

TIMING WAVEFORM OF SEMAPHORE WRITE CONTENTION^(1,3,4)

NOTES:

- 1. DOR = DOL =VIH, $\overline{CE}R = \overline{CE}L = VIH$.
- 2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite port from "A".
- 3. This parameter is measured from $R/\overline{W}^{*}A^{*}$ or $\overline{SEM}^{*}A^{*}$ going high to $R/\overline{W}^{*}B^{*}$ or $\overline{SEM}^{*}B^{*}$ going High.
- 4. If tsps is not satisfied, there is no guarantee which side will obtain the semaphore flag.

AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE⁽⁶⁾

)15X12 'l. Only		15X15 . Only	IDT701 Com'l.		
Symbol	Parameter	Min.	Max.	Min.	Max	Min	Max.	Unit
BUSY TIN	IING (M/S = VIH)							
tBAA	BUSY Access Time from Address Match	—	12	_	15	—	17	ns
tBDA	BUSY Disable Time from Address Not Matched	—	12		15	—	17	ns
tBAC	BUSY Access Time from Chip Enable Low	—	12	_	15	_	17	ns
tBDC	BUSY Disable Time from Chip Enable High	—	12		15	_	17	ns
taps	Arbitration Priority Set-up Time ⁽²⁾	5	_	5		5		ns
tBDD	BUSY Disable to Valid Data ⁽³⁾	_	15		18	_	18	ns
twн	Write Hold After BUSY ⁽⁵⁾	11	_	13		13	_	ns
BUSY TIN	IING (M/S̃ = Vı∟)				-			
twв	BUSY Input to Write ⁽⁴⁾	0	—	0		0	_	ns
twн	Write Hold After BUSY ⁽⁵⁾	11	—	13		13	_	ns
PORT-TO	-PORT DELAY TIMING							
twdd	Write Pulse to Data Delay ⁽¹⁾	_	25	_	30	_	30	ns
tDDD	Write Data Valid to Read Data Delay ⁽¹⁾	—	20	—	25	—	25	ns

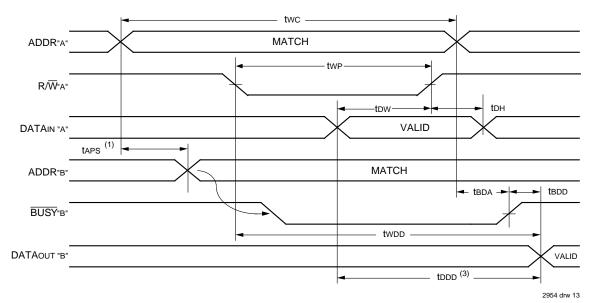
		IDT70	15X20	IDT70	15X25	IDT7015X35			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
BUSY TI	MING (M/S̄ = Vih)	•							
tBAA	BUSY Access Time from Address Match	—	20	—	20	—	20	ns	
t BDA	BUSY Disable Time from Address Not Matched	—	20	—	20	—	20	ns	
tBAC	BUSY Access Time from Chip Enable Low	—	20	—	20	—	20	ns	
tBDC	BUSY Disable Time from Chip Enable High	_	17	—	17	—	20	ns	
taps	Arbitration Priority Set-up Time ⁽²⁾	5	—	5	—	5	—	ns	
tBDD	BUSY Disable to Valid Data ⁽³⁾	_	30	_	30	_	35	ns	
twн	Write Hold After BUSY ⁽⁵⁾	15	—	17		25	—	ns	
BUSY TI	MING (M/S̄ = VI∟)		_	_	-		-		
twв	BUSY Input to Write ⁽⁴⁾	0		0		0		ns	
twн	Write Hold After BUSY ⁽⁵⁾	15	—	17	_	25	_	ns	
PORT-TO	D-PORT DELAY TIMING								
twdd	Write Pulse to Data Delay ⁽¹⁾		45	_	50	_	60	ns	
tDDD	Write Data Valid to Read Data Delay ⁽¹⁾	_	30	_	35	_	45	ns	

NOTES:

2940 tbl 13

1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Wave form of Write with Port-to-Port Read and \overline{BUSY} (M/ \overline{S} = VIH)".

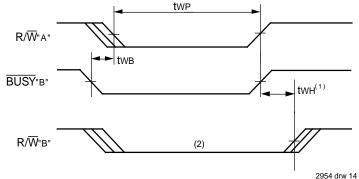
2. To ensure that the earlier of the two ports wins.


3. tBDD is a calculated parameter and is the greater of 0, twDD - twp (actual), or tDDD - tDw (actual).

4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".

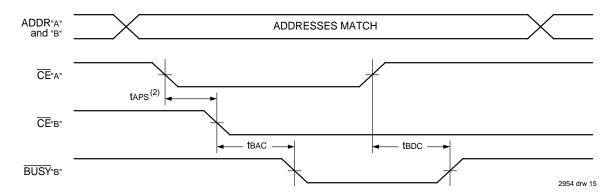
5. To ensure that a write cycle is completed on port "B" after contention on port "A".

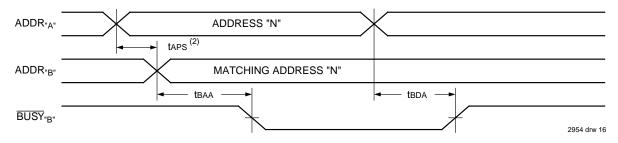
6. "X" in part numbers indicates power rating (S or L).


TIMING WAVEFORM OF READ WITH $\overline{\text{BUSY}}$ (M/ $\overline{\text{S}}$ = V_{IH})^(2,4,5)

NOTES:

- 1. To ensure that the earlier of the two ports wins. tAPS is ignored for $M/\overline{S}=VIL$.
- 2. $\overline{CE}L = \overline{CE}R = VIL$.
- OE = VIL for the reading port.
 If M/S = VIL (slave), BUSY is an input. Then for this example BUSY^{*}A^{*} = VIH and BUSY^{*}B^{*} input is shown above.
- 5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".


TIMING WAVEFORM OF WRITE WITH BUSY


NOTES:

- 1. twH must be met for both BUSY input (SLAVE) and output (MASTER).
- 2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes High.
- 3. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".

WAVEFORM OF BUSY ARBITRATION CONTROLLED BY \overline{CE} TIMING (M/ \overline{S} = ViH)⁽¹⁾

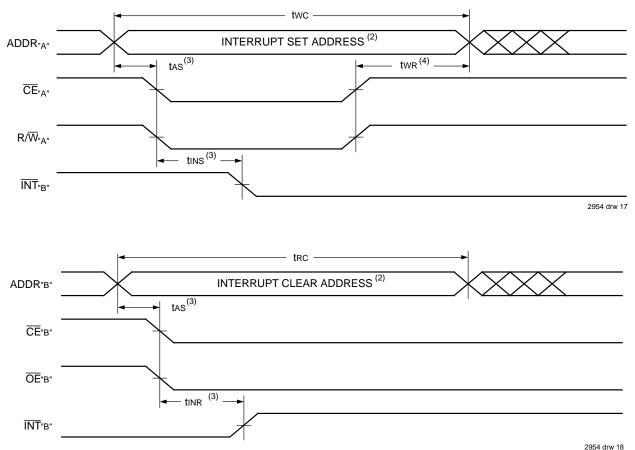
WAVEFORM OF BUSY ARBITRATION CYCLE CONTROLLED BY ADDRESS MATCH TIMING $(M/\overline{S} = Vih)^{(1)}$

NOTES:

1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from "A".

2. If tAPS is not satisfied, the busy signal will be asserted on one side or another but there is no guarantee on which side busy will be asserted.

AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE⁽¹⁾


		-	15X12 . Only	IDT701 Com'l.		IDT70 [,] Com'l		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min	Max.	Unit
INTERRU	PT TIMING							
tAS	Address Set-up Time	0	—	0	_	0	—	ns
twr	Write Recovery Time	0	—	0	_	0	—	ns
tins	Interrupt Set Time	—	12	—	15	—	17	ns
tinr	Interrupt Reset Time	—	12	—	15	—	17	ns

		IDT70	15X20	IDT7015X25		IDT7015X35		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
INTERRU	PT TIMING						-	
tas	Address Set-up Time	0	—	0	—	0	—	ns
twR	Write Recovery Time	0		0	—	0	—	ns
tins	Interrupt Set Time		20	_	20	—	25	ns
tinr	Interrupt Reset Time	—	20	—	20	—	25	ns

NOTE:

1. "X" in part numbers indicates power rating (S or L).

WAVEFORM OF INTERRUPT TIMING⁽¹⁾

NOTES:

1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from "A".

2. See Interrupt truth table.

- 3. Timing depends on which enable signal (\overline{CE} or R/\overline{W}) is asserted last.
- 4. Timing depends on which enable signal $(\overline{CE} \text{ or } R/\overline{W})$ is de-asserted first.

TRUTH TABLES

TRUTH TABLE I — INTERRUPT FLAG⁽¹⁾

	Le	ft Port		Left Port						
R/WL	CEL		A12L-A0L	ĪNT∟	R/WR	CER	OE R	A12R-A0R	INT R	Function
L	L	Х	1FFF	Х	Х	Х	Х	Х	L ⁽²⁾	Set Right INTR Flag
Х	Х	Х	Х	Х	Х	L	L	1FFF	H ⁽³⁾	Reset Right INTR Flag
Х	Х	Х	Х	L ⁽³⁾	L	L	Х	1FFE	Х	Set Left INT∟ Flag
Х	L	L	1FFE	H ⁽²⁾	Х	Х	Х	Х	Х	Reset Left INT∟ Flag

NOTES:

1. Assumes $\overline{\text{BUSY}}_{L} = \overline{\text{BUSY}}_{R} = \text{VIH}.$

2. If $\overline{\text{BUSY}}_{L} = \text{VIL}$, then no change.

3. If $\overline{\text{BUSY}}_{R} = \text{VIL}$, then no change.

TRUTH TABLE II — ADDRESS BUSY ARBITRATION

	Inp	outs	Out	puts	
CEL	CER	A0L-A12L A0R-A12R	BUSYL ⁽¹⁾	BUSYR ⁽¹⁾	Function
Х	Х	NO MATCH	Н	Н	Normal
Н	Х	MATCH	Н	Н	Normal
Х	Н	MATCH	Н	Н	Normal
L	L	MATCH	(2)	(2)	Write Inhibit ⁽³⁾

NOTES:

2954 tbl 16

1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYx outputs on the IDT7015 are push-pull, not open drain outputs. On slaves the BUSYx input internally inhibits writes.

 "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address and enable inputs of this port. If t APS is not met, either BUSYL or BUSYR = Low will result. BUSYL and BUSYR outputs can not be low simultaneously.

3. Writes to the left port are internally ignored when BUSYL outputs are driving low regardless of actual logic level on the pin. Writes to the right port are internally ignored when BUSYR outputs are driving low regardless of actual logic level on the pin.

TRUTH TABLE III — EXAMPLE OF SEMAPHORE PROCUREMENT SEQUENCE^(1,2)

Functions	Do - D8 Left	Do - D8 Right	Status
No Action	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Right Port Writes "0" to Semaphore	0	1	No change. Right side has no write access to semaphore
Left Port Writes "1" to Semaphore	1	0	Right port obtains semaphore token
Left Port Writes "0" to Semaphore	1	0	No change. Left port has no write access to semaphore
Right Port Writes "1" to Semaphore	0	1	Left port obtains semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free
Right Port Writes "0" to Semaphore	1	0	Right port has semaphore token
Right Port Writes "1" to Semaphore	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free

NOTES:

1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7015.

2. There are eight semaphore flags written to via I/Oo and read from I/Oo.a. These eight semaphores are addressed by Ao - A2.

FUNCTIONAL DESCRIPTION

The IDT7015 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT7015 has an automatic power down feature controlled by \overline{CE} . The \overline{CE} controls on-chip power down circuitry that permits the respective port to go into a standby mode when not selected (\overline{CE} High). When a port is enabled, access to the entire memory array is permitted.

INTERRUPTS

If the user chooses to use the interrupt function, a memory location (mail box or message center) is assigned to each port. The left port interrupt flag (INTL) is asserted when the right port writes to memory location 1FFE where a write is defined as the $\overline{CE} = R/\overline{W} = V_{1L}$ per the Truth Table. The left port clears the interrupt by an address location 1FFE access when $\overline{CER} = \overline{OER} = V_{1L}$, R/\overline{W} is a "don't care". Likewise, the right port interrupt flag (INTR) is asserted when the left port writes to

memory location 1FFF and to clear the interrupt flag (INTR), the right port must access memory location 1FFF. The message (9 bits) at 1FFE or 1FFF is user-defined since it is an addressable SRAM location. If the interrupt function is not used, address locations 1FFE and 1FFF are not used as mail boxes but are still part of the random access memory. Refer to Truth Table for the interrupt operation.

BUSY LOGIC

Busy Logic provides a hardware indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is "Busy". The busy pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a busy indication, the write signal is gated internally to prevent the write from proceeding.

The use of busy logic is not required or desirable for all

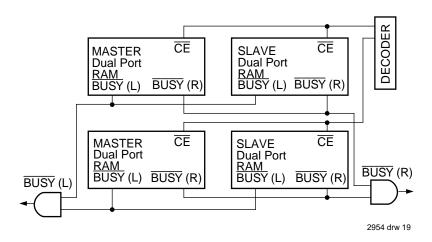


Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7015 RAMs.

applications. In some cases it may be useful to logically OR the busy outputs together and use any busy indication as an interrupt source to flag the event of an illegal or illogical operation. If the write inhibit function of busy logic is not desirable, the busy logic can be disabled by placing the part in slave mode with the M/S pin. Once in slave mode the BUSY pin operates solely as a write inhibit input pin. Normal operation can be programmed by tying the BUSY pins high. If desired, unintended write operations can be prevented to a port by tying the busy pin for that port low.

The busy outputs on the IDT7015 RAM in master mode, are push-pull type outputs and do not require pull up resistors to operate. If these RAMs are being expanded in depth, then the busy indication for the resulting array requires the use of an external AND gate.

WIDTH EXPANSION WITH BUSY LOGIC MASTER/SLAVE ARRAYS

When expanding an IDT7015 RAM array in width while using busy logic, one master part is used to decide which side of the RAM array will receive a busy indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master, use the busy signal as a write inhibit signal. Thus on the IDT7015 RAM the busy pin is an output if the part is used as a master (M/\overline{S} pin = H), and the busy pin is an input if the part used as a slave (M/\overline{S} pin = L) as shown in Figure 3.

If two or more master parts were used when expanding in width, a split decision could result with one master indicating busy on one side of the array and another master indicating busy on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word.

The busy arbitration, on a master, is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a busy flag to be output from the master before the actual write pulse can be initiated with the R/\overline{W} signal. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave.

SEMAPHORES

The IDT7015 are extremely fast Dual-Port 8Kx9 Static RAMs with an additional 8 address locations dedicated to binary semaphore flags. These flags allow either processor on the left or right side of the Dual-Port RAM to claim a privilege over the other processor for functions defined by the system designer's software. As an example, the semaphore can be used by one processor to inhibit the other from accessing a portion of the Dual-Port RAM or any other shared resource.

The Dual-Port RAM features a fast access time, and both ports are completely independent of each other. This means that the activity on the left port in no way slows the access time of the right port. Both ports are identical in function to standard CMOS Static RAM and can be read from, or written to, at the same time with the only possible conflict arising from the simultaneous writing of, or a simultaneous READ/WRITE of, a non-semaphore location. Semaphores are protected against such ambiguous situations and may be used by the system program to avoid any conflicts in the non-semaphore portion of the Dual-Port RAM. These devices have an automatic power-down feature controlled by \overline{CE} , the Dual-Port RAM enable, and \overline{SEM} , the semaphore enable. The \overline{CE} and \overline{SEM} pins control on-chip power down circuitry that permits the respective port to go into standby mode when not selected. This is the condition which is shown in Truth Table where \overline{CE} and SEM are both high.

Systems which can best use the IDT7015 contain multiple processors or controllers and are typically very high-speed systems which are software controlled or software intensive. These systems can benefit from a performance increase offered by the IDT7015's hardware semaphores, which provide a lockout mechanism without requiring complex programming. Software handshaking between processors offers the maximum in system flexibility by permitting shared resources to be allocated in varying configurations. The IDT7015 does not use its semaphore flags to control any resources through hardware, thus allowing the system designer total flexibility in system architecture.

An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very high-speed systems.

HOW THE SEMAPHORE FLAGS WORK

The semaphore logic is a set of eight latches which are independent of the Dual-Port RAM. These latches can be used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphores provide a hardware assist for a use assignment method called "Token Passing Allocation." In this method, the state of a semaphore latch is used as a token indicating that shared resource is in use. If the left processor wants to use this resource, it requests the token by setting the latch. This processor then verifies its success in setting the latch by reading it. If it was successful, it proceeds to assume control over the shared resource. If it was not successful in setting the latch, it determines that the right side processor has set the latch first, has the token and is using the shared resource. The left processor can then either repeatedly request that semaphore's status or remove its request for that semaphore to perform another task and occasionally attempt again to gain control of the token via the set and test sequence. Once the right side has relinquished the token, the left side should succeed in gaining control.

The semaphore flags are active low. A token is requested by writing a zero into a semaphore latch and is released when the same side writes a one to that latch.

The eight semaphore flags reside within the IDT7015 in a separate memory space from the Dual-Port RAM. This address space is accessed by placing a low input on the SEM pin (which acts as a chip select for the semaphore flags) and using the other control pins (Address, \overline{OE} , and R/\overline{W}) as they would be used in accessing a standard static RAM. Each of the flags has a unique address which can be accessed by either side through address pins A0–A2. When accessing the semaphores, none of the other address pins has any effect.

When writing to a semaphore, only data pin D₀ is used. If a low level is written into an unused semaphore location, that flag will be set to a zero on that side and a one on the other side (see Table III). That semaphore can now only be modified by the side showing the zero. When a one is written into the same location from the same side, the flag will be set to a one for both sides (unless a semaphore request from the other side is pending) and then can be written to by both sides. The fact that the side which is able to write a zero into a semaphore subsequently locks out writes from the other side is what makes semaphore flags useful in interprocessor communications. (A thorough discussing on the use of this feature follows shortly.) A zero written into the same location from the other side will be stored in the semaphore request latch for that side until the semaphore is freed by the first side.

When a semaphore flag is read, its value is spread into all data bits so that a flag that is a one reads as a one in all data bits and a flag containing a zero reads as all zeros. The read value is latched into one side's output register when that side's semaphore select (\overline{SEM}) and output enable (\overline{OE}) signals go active. This serves to disallow the semaphore from changing state in the middle of a read cycle due to a write cycle from the other side. Because of this latch, a repeated read of a semaphore in a test loop must cause either signal (\overline{SEM} or \overline{OE}) to go inactive or the output will never change.

A sequence WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write a zero into a semaphore location. If the semaphore is already in use, the semaphore request latch will contain a zero, yet the semaphore flag will appear as one, a fact which the processor will verify by the subsequent read (see Table III). As an example, assume a processor writes a zero to the left port at a free semaphore location. On a subsequent read, the processor will verify that it has written successfully to that location and will assume control over the resource in question. Meanwhile, if a processor on the right side attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that a one will be read from that semaphore on the right side during subsequent read. Had a sequence of READ/WRITE been used instead, system contention problems could have occurred during the gap between the read and write cycles.

It is important to note that a failed semaphore request must be followed by either repeated reads or by writing a one into the same location. The reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 4. Two semaphore request latches feed into a semaphore flag. Whichever latch is first to present a zero to the semaphore flag will force its side of the semaphore flag low and the other side high. This condition will continue until a one is written to the same semaphore request latch. Should the other side's semaphore request latch have been written to a zero in the meantime, the semaphore flag will flip over to the other side as soon as a one is written into the first side's request latch. The second side's flag will now stay low until its semaphore request latch is written to a one. From this it is easy to understand that, if a semaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore request latch.

The critical case of semaphore timing is when both sides request a single token by attempting to write a zero into it at the same time. The semaphore logic is specially designed to resolve this problem. If simultaneous requests are made, the logic guarantees that only one side receives the token. If one side is earlier than the other in making the request, the first side to make the request will receive the token. If both requests arrive at the same time, the assignment will be arbitrarily made to one port or the other.

One caution that should be noted when using semaphores is that semaphores alone do not guarantee that access to a

resource is secure. As with any powerful programming technique, if semaphores are misused or misinterpreted, a software error can easily happen.

Initialization of the semaphores is not automatic and must be handled via the initialization program at power-up. Since any semaphore request flag which contains a zero must be reset to a one, all semaphores on both sides should have a one written into them at initialization from both sides to assure that they will be free when needed.

USING SEMAPHORES—SOME EXAMPLES

Perhaps the simplest application of semaphores is their application as resource markers for the IDT7015's Dual-Port RAM. Say the 8K x 9 RAM was to be divided into two 4K x 9 blocks which were to be dedicated at any one time to servicing either the left or right port. Semaphore 0 could be used to indicate the side which would control the lower section of memory, and Semaphore 1 could be defined as the indicator for the upper section of memory.

To take a resource, in this example the lower 4K of Dual-Port RAM, the processor on the left port could write and then read a zero in to Semaphore 0. If this task were successfully completed (a zero was read back rather than a one), the left processor would assume control of the lower 4K. Meanwhile the right processor was attempting to gain control of the resource after the left processor, it would read back a one in response to the zero it had attempted to write into Semaphore 0. At this point, the software could choose to try and gain control of the second 4K section by writing, then reading a zero into Semaphore 1. If it succeeded in gaining control, it would lock out the left side.

Once the left side was finished with its task, it would write a one to Semaphore 0 and may then try to gain access to Semaphore 1. If Semaphore 1 was still occupied by the right side, the left side could undo its semaphore request and perform other tasks until it was able to write, then read a zero into Semaphore 1. If the right processor performs a similar task with Semaphore 0, this protocol would allow the two processors to swap 4K blocks of Dual-Port RAM with each other.

The blocks do not have to be any particular size and can even be variable, depending upon the complexity of the software using the semaphore flags. All eight semaphores could be used to divide the Dual-Port RAM or other shared resources into eight parts. Semaphores can even be assigned different meanings on different sides rather than being given a common meaning as was shown in the example above.

Semaphores are a useful form of arbitration in systems like disk interfaces where the CPU must be locked out of a section of memory during a transfer and the I/O device cannot tolerate any wait states. With the use of semaphores, once the two devices has determined which memory area was "off-limits" to the CPU, both the CPU and the I/O devices could access their assigned portions of memory continuously without any wait states.

Semaphores are also useful in applications where no memory "WAIT" state is available on one or both sides. Once a semaphore handshake has been performed, both processors can access their assigned RAM segments at full speed.

Another application is in the area of complex data structures. In this case, block arbitration is very important. For this application one processor may be responsible for building and updating a data structure. The other processor then reads and interprets that data structure. If the interpreting processor reads an incomplete data structure, a major error condition may exist. Therefore, some sort of arbitration must be used between the two different processors. The building processor arbitrates for the block, locks it and then is able to go in and update the data structure. When the update is completed, the data structure block is released. This allows the interpreting processor to come back and read the complete data structure, thereby guaranteeing a consistent data structure.

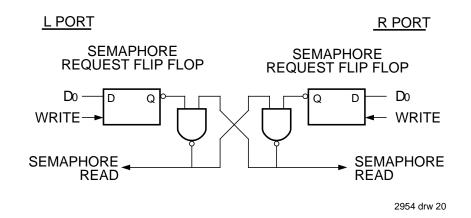
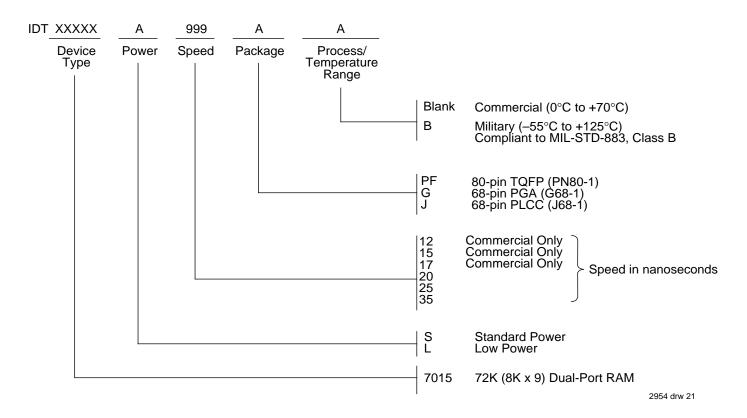



Figure 4. IDT7015 Semaphore Logic

ORDERING INFORMATION

