HIGH-SPEED 4K x 9 SYNCHRONOUS DUAL-PORT RAM

IDT7099S

FEATURES:

• High-speed clock-to-data output times

Military: 20/25/30ns (max.)Commercial: 15/20/25ns (max.)

• Low-power operation

— IDT7099S

Active: 900 mW (typ.) Standby: 50 mW (typ.)

· Architecture based on Dual-Port RAM cells

Allows full simultaneous access from both ports

Independent bit/byte Read and Write inputs for control functions

• Synchronous operation

 4ns setup to clock, 1ns hold on all control, data, and address inputs

Data input, address, and control registers

- Fast 15ns clock to data out

- 20ns cycle times, 50MHz operation

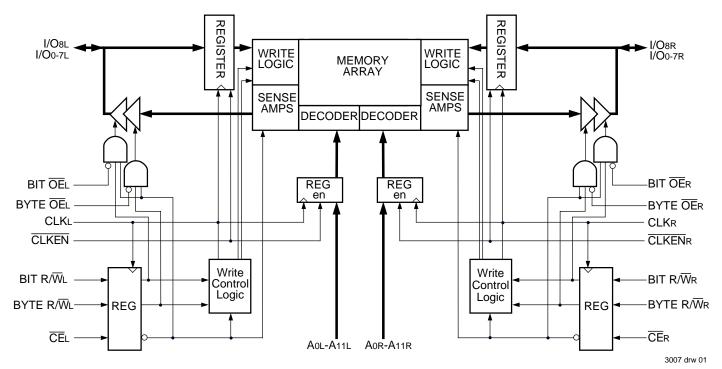
· Clock enable feature

· Guaranteed data output hold times

Available in 68-pin PGA, 68-pin PLCC, and 80-pin TQFP

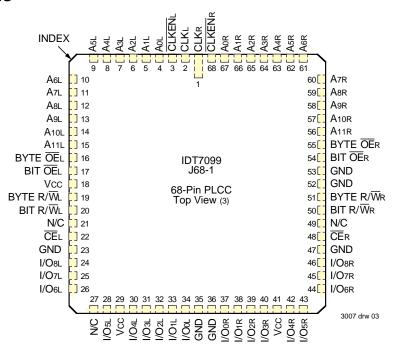
· Military product compliant to MIL-STD-883, Class B

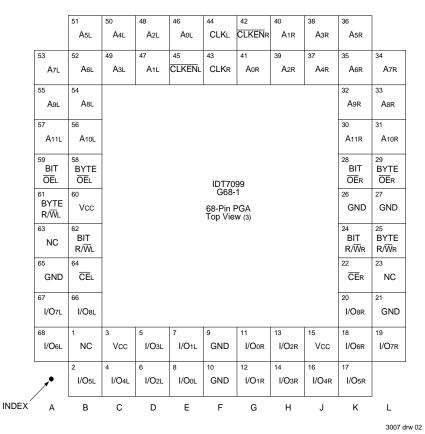
Industrial temperature range (-40°C to +85°C) is available, tested to military electrical specifications


DESCRIPTION:

The IDT7099 is a high-speed 4K x 9 bit synchronous Dual-Port RAM. The memory array is based on Dual-Port memory cells to allow simultaneous access from both ports. Registers on control, data, and address inputs provide low set-up and hold times. The timing latitude provided by this approach allow systems to be designed with very short realized cycle times. With an input data register, this device has been optimized for applications having unidirectional data flow or bi-directional data flow in bursts. Changing data direction from reading to writing normally requires one dead cycle.

These Dual-Ports typically operate on only 900mW of power at maximum high-speed clock-to-data output times as fast as 15ns. An automatic power down feature, controlled by \overline{CE} , permits the on-chip circuitry of each port to enter a very low standby power mode.


The IDT7099 is packaged in a 68-pin PGA, 68-pin PLCC, and a 80-pin TQFP. Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.


FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATIONS (1,2)

NOTES:

- 1. All VCC pins must be connected to power supply.
- 2. All ground pins must be connected to ground supply.
- This text does not indicate orientation of the actual part-marking.

6.23 2

PIN CONFIGURATIONS (CONT'D) (1,2)

NOTES:

- 1. All VCC pins must be connected to power supply.
- 2. All ground pins must be connected to ground supply.
- 3. This text does not indicate the orientaion of the actual part-marking.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Commercial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	–0.5 to +7.0	>
VTERM ⁽³⁾	Terminal Voltage	-0.5 to VCC	–0.5 to VCC	>
TA	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Tstg	Storage Temperature	-55 to +125	–65 to +150	°C
lout	DC Output Current	50	50	mA

NOTES: 3007 tbl 0

- Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VTERM must not exceed Vcc + 0.5V for more than 25% of the cycle time or 10ns maximum, and is limited to ≤ 20mA for the period of VTERM ≥ Vcc + 0.5V.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Ambient Grade Temperature		GND	vcc
Military	−55°C to +125°C	0V	5.0V ± 10%
Commercial	0°C to +70°C	0V	5.0V ± 10%

3007 tbl 02

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
VCC	Supply Voltage	4.5	5.0	5.5	٧
GND	Supply Voltage	0	0	0	V
VIH	Input High Voltage	2.2		6.0 ⁽²⁾	٧
VIL	Input Low Voltage	-0.5(1)	_	8.0	V

NOTES:

3007 tbl 03

- 1. $VIL \ge -1.5V$ for pulse width less than 10ns.
- 2. VTERM must not exceed Vcc + 0.5V.

CAPACITANCE(1)

 $(TA = +25^{\circ}C, F = 1.0MHz) TQFP ONLY$

Symbol	Parameter	Condition ⁽²⁾	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	9	pF
COUT	Output Capacitance	VOUT = 3dV	10	pF

NOTES:

3007 tbl 04

- These parameters are determined by device characterization, but are not production tested.
- 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V.

6.23 3

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (Vcc = $5.0V \pm 10\%$)

			IDT7099S		
Symbol	Parameter	Test Condition	Min.	Max.	Unit
ILI	Input Leakage Current (1)	Vcc = 5.5V, $Vin = 0V$ to Vcc	_	10	μΑ
ILO	Output Leakage Current	CE = V _{IH} , VOUT = 0V to Vcc	_	10	μΑ
Vol	Output Low Voltage	IOL = 4mA	_	0.4	V
Voн	Output High Voltage	IOL = -4mA	2.4	_	V

NOTE:

3007 tbl 05

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE⁽⁴⁾ (Vcc = $5V \pm 10\%$)

				IDT7099S15 Com'l. Only		IDT7099S20		20 IDT7099S25		IDT7099S30 Mil Only		
Symbol	Parameter	Test Conditions	Version	Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	Unit
Icc	Dynamic Operating	CE = VIL Outputs Open	Mil.		_	170	310	160	290	160	270	mA
	Current (Both Ports Active)	$f = fmax^{(1)}$	Com'l.	180	300	170	290	160	270	_	_	
ISB1	Standby Current (Both	CEL and CER = VIH	Mil.	_	-	85	140	80	130	80	110	mA
	Ports—TTL Level Inputs)	$f = fmAX^{(1)}$	Com'l.	90	140	85	130	80	110	_	_	
ISB2	Standby Current (One	\overline{CE} 'A' = VIL and \overline{CE} 'B' = VIH (3) Active Port	Mil.		_	150	210	140	200	140	180	mA
	Port—TTL Level Inputs)	Outputs Open, $f = fmAX^{(1)}$	Com'l.	160	210	150	200	140	180	_	_	
ISB3	Full Standby Current (Both	Both Ports CER and CEL ≥ Vcc – 0.2V	Mil.	_	_	10	20	10	20	10	20	mA
	Ports—CMOS Level Inputs)	$\begin{aligned} &\text{Vin} \geq \text{Vcc} - 0.2\text{V} \\ &\text{or Vin} \leq 0.2\text{V, f} = 0^{(2)} \end{aligned}$	Com'l.	10	15	10	_	10	_	_		
ISB4	Full Standby Current (One	\overline{CE} 'A' \leq 0.2V and \overline{CE} 'B ' \geq VCC -0.2V or	Mil.	_	_	145	200	135	190	135	170	mA
	Port—CMOS Level Inputs)	VIN \leq 0.2V, Active Port Outputs Open, f = fmAX ⁽¹⁾	Com'l.	155	200	145	190	135	170	_	_	

NOTES:

3007 tbl 06

- 1. At f = fmax, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of the 1/tclk, using "AC TEST CONDITIONS" of input levels of GND to 3V.
- 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.
- 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 4. Vcc = 5V, $TA = 25^{\circ}C$ for Typ, and are not production tested. $Icc \, Dc = 150 \text{mA}$ (Typ).

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1, 2, and 3

3007 tbl 07

^{1.} Input leakages are undefined at $Vcc \le 2.0V$.

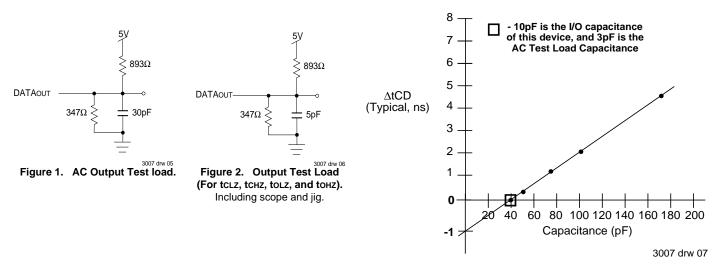


Figure 3. Typical Output Derating (Lumped Capacitive Load).

AC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE RANGE — (READ AND WRITE CYCLE TIMING)

(Commercial: $VCC = 5V \pm 10\%$, $TA = 0^{\circ}C$ to $+70^{\circ}C$; Military: $VCC = 5V \pm 10\%$, $TA = -55^{\circ}C$ to $+125^{\circ}C$)

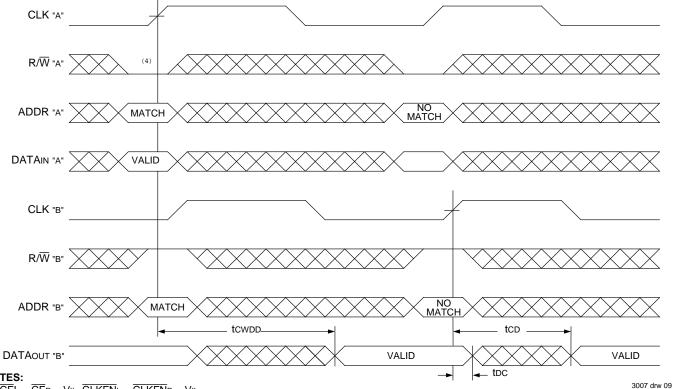
		Commercial				Military								
		709	7099S15 7099S20 7099		S25	7099	9S20	7099S25		7099S30				
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tcyc	Clock Cycle Time	20	_	20	_	25	_	20	_	25	_	30	_	ns
tch	Clock High Time	6	_	8	_	10	_	8	_	10	_	12	_	ns
tCL	Clock Low Time	6	_	8	_	10	_	8	_	10	_	12	_	ns
tCD	Clock High to Output Valid	_	15	_	20	_	25	_	20	_	25	_	30	ns
ts	Registered Signal Set-up Time	4	_	5	_	6	_	5	_	6	_	7	_	ns
tH	Registered Signal Hold Time	1	_	1	_	1	_	2	_	2	_	2	_	ns
tDC	Data Output Hold After Clock High	3	_	3	_	3		3	_	3	_	3	_	ns
tcklz	Clock High to Output Low-Z(1,2)	2	_	2	_	2	_	2	_	2	_	2	_	ns
tckhz	Clock High to Output High-Z(1,2)	_	7	_	9	_	12	_	9	_	12	_	15	ns
toe	Output Enable to Output Valid	_	8	_	10	_	12	_	10	_	12	_	15	ns
tolz	Output Enable to Output Low-Z(1,2)	0	_	0	_	0	_	0	_	0	_	0	_	ns
tonz	Output Disable to Output High-Z ^(1,2)	_	7	_	9	_	11		9	_	11	_	14	ns
tsck	Clock Enable, Disable Set-up Time	4	_	5	_	6	_	5	_	6	_	7	_	ns
tHCK	Clock Enable, Disable Hold Time	2	_	2	_	2	_	3	_	3	_	3	_	ns
tCWDD	Write Port Clock High to Read Data Delay	_	30	—	35	_	45	_	35	_	45	_	55	ns

6.23


NOTES:

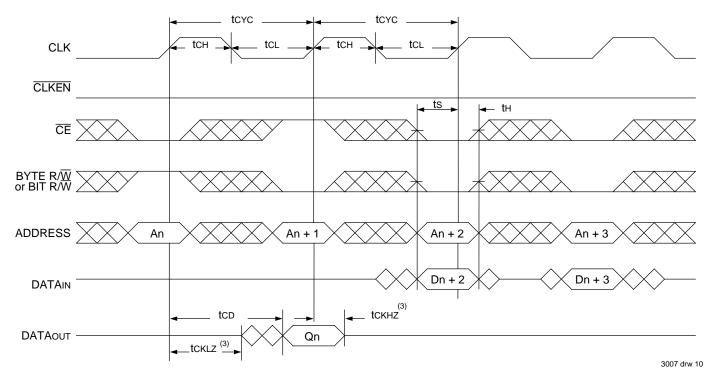
1. Transition is measured +/-200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).

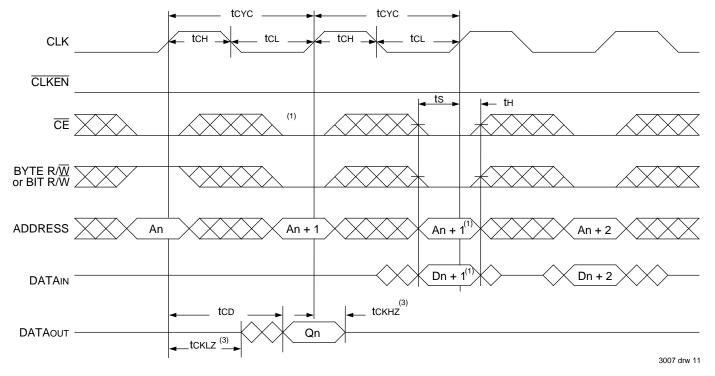
2. This parameter is guaranteed by device characterization, but is not production tested.


5

TIMING WAVEFORM OF READ CYCLE, EITHER SIDE

1. Transition is measured +/-200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).


TIMING WAVEFORM OF WRITE WITH PORT-TO-PORT READ (1,2,3)


NOTES:

- 1. $\overline{CEL} = \overline{CER} = VIL$, $\overline{CLKEN}L = \overline{CLKEN}R = VIL$
- 2. $\overline{OE} = V_{IL}$ for the reading port, port 'B'.
- 3. All timing is the same for left and right ports. Ports "A" may be either the left or right port. Port "B" is opposite from port "A".
- 4. $R/\overline{W}_{A'}$ was active (V_{IL}) during the previous CLK'A', when enabled the write path.

TIMING WAVEFORM OF READ-TO-WRITE CYCLE NO. 1, $\overline{CE} = VIH^{(2)}$

TIMING WAVEFORM OF READ-TO-WRITE CYCLE NO. 2, $\overline{CE} = VIL^{(2)}$

NOTES:

- 1. During dead cycle, if $\overline{\text{CE}} = \text{VIL}$, then invalid data will be written into array. The An+1 must be rewritten on the following cycle.
- 2. $\overline{\mathsf{OE}}$ low throughout.
- 3. Transition is measured +/-200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).

FUNCTIONAL DESCRIPTION

The IDT7099 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide very short set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal. An asynchronous output enable is provided to ease asynchronous bus interfacing.

The internal write pulse width is dependent on the low to high transitions of the clock signal allowing the shortest possible realized cycle times. Clock enable inputs are provided to stall the operation of the address and data input registers without introducing clock skew for very fast interleaved memory applications.

The data inputs are gated to control on-chip noise in bussed applications. The user must guarantee that the BYTE R/W and BIT R/W pins are low for at least one clock cycle before any write is attempted. A High on the $\overline{\text{CE}}$ input for one clock cycle will power down the internal circuitry to reduce static power consumption.

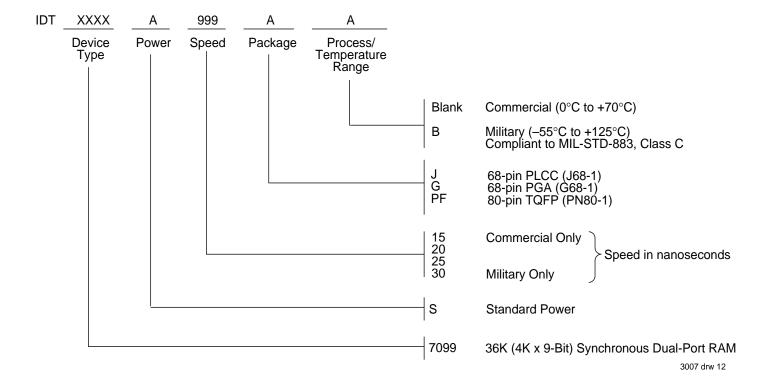
The device has separate Bit Write, Byte Write, Bit Enable, and Byte Enable pins to allow for independent control.

TRUTH TABLE I – READ/WRITE CONTROL(1)

Inputs								
	Sync	:hronous ⁽³⁾		Asynch	ronous	Out	puts	
CLK	CE	Byte R/W	Bit R/W	Byte OE	Bit OE	I/O0-7	I/O8	Mode
£	h	h	h	Х	Х	High-Z	High-Z	Deselected, Power Down, Data I/O Disabled
£	h	1	h	Х	Х	DATAIN	High-Z	Deselected, Power Down, Byte Data Input Enabled
£	h	h	1	Х	Х	High-Z	DATAIN	Deselected, Power Down, Bit Data Input Enabled
F	h	1	I	Х	Х	DATAIN	DATAIN	Deselected, Power Down, Data Input Enabled
£	I	1	h	Х	L	DATAIN	DATAout	Write Byte, Read Bit
F	I	I	h	Х	Н	DATAIN	High-Z	Write Byte Only
F	I	h	I	L	Х	DATAOUT	DATAIN	Read Byte, Write Bit
F	I	h	I	Н	Х	High-Z	DATAIN	Write Bit Only
5	I	I	I	Х	Х	DATAIN	DATAIN	Write Byte, Write Bit
£	I	h	h	L	L	DATAOUT	DATAout	Read Byte, Read Bit
5	I	h	h	Н	L	High-Z	DATAouT	Read Bit Only
4	I	h	h	L	Н	DATAOUT	High-Z	Read Byte Only
£	I	h	h	Н	Н	High-Z	High-Z	Data I/O Disabled

3007 tbl 09

TRUTH TABLE II – CLOCK ENABLE FUNCTION TABLE(1)


	Inp	uts	Registe	er Inputs	Register Outputs		
Operating Mode	CLK ⁽³⁾	CLKEN(2)	ADDR	DATAIN	ADDR	DATAOUT	
Load "1"	F	I	h	h	Н	Н	
Load "0"	Ţ	I	I	I	L	L	
Hold (do nothing)	<u>F</u>	h	Х	Х	NC	NC	
	Х	Н	Х	Х	NC	NC	

NOTES:

3007 tbl 10

- 1. 'H' = High voltage level steady state, 'h' = High voltage level one set-up time prior to the low-to-high clock transition, 'L' = Low voltage level steady state 'l' = Low voltage level one set-up time prior to the Low-to-High clock transition, 'X' = Don't care, 'NC' = No change
- 2. CLKEN = VIL must be clocked in during Power-Up.
- 3. Control signals are initialted and terminated on the rising edge of the CLK, depending on their input level. When RW and CE are low, a write cycle is initiated on the low-to-high transition of the CLK. Termination of a write cycle is done on the next low-to-high transistion of the CLK.

ORDERING INFORMATION

